Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catching the blood cell bus gives fatal yeast infection a clean getaway

09.09.2008
Yeast fungus cells that kill thousands of AIDS patients every year escape detection by our bodies' defences by hiding inside our own defence cells, and hitch a ride through our systems before attacking and spreading, scientists heard today (Tuesday 9 September 2008) at the Society for General Microbiology's 163rd meeting being held this week at Trinity College, Dublin.

Cells of the Cryptococcus yeast responsible for one of the three most life-threatening infections that commonly attack HIV infected patients, causing cryptococcal meningitis, are using a previously unknown way to avoid detection, according to scientists from the University of Birmingham, UK.

"We have shown that these airborne yeast cells can hide inside our bodies' own white blood cells, called macrophages, and then use them as vehicles to travel around inside our bodies, using them just like a bus," said Miss Hansong Ma of the University of Birmingham. "The yeast cells then escape from inside the macrophages when they arrive at the right destination - but importantly, they do this without killing the macrophage, which would trigger alarm bells."

When a host's cells are invaded by bacteria, fungi or viruses the invaders usually use the opportunity to multiply inside the cells and escape by bursting out, killing the host and releasing thousands of copies of the pathogen to attack other cells. The death of the host cell releases debris and by-products which usually triggers our bodies into mounting an immune response, causing inflammation.

"This new method of remaining inside the host cells means that the pathogen can spread more efficiently round our bodies and is protected from the natural defences in our bloodstream that would normally kill the yeast or other invader," said Hansong Ma. "Yeast cells avoid killing or damaging the macrophages. They leave by a method that we call 'vomocytosis'; the yeast cells are acting like spies rather than terrorists, and go unnoticed, giving them more time to establish an infection."

Although the use of antiretroviral drugs is cutting the number of AIDS patients with Cryptococcus infections there is still a major epidemic in Southeast Asia and Africa. Up to 30% of AIDS patients there are infected, and up to 44% will die from the disease within 8 weeks. Even in the USA or European countries like France where antiretroviral drug treatments are readily available, one in ten infected patients will die.

"We badly need to better understand the interaction between hosts, viruses and attacking pathogens like the yeast fungus to help us find new drug targets and so design new ways to treat these patients," said Hansong Ma.

"We used time-lapse microscope photography to identify this new escape mechanism, and watched the yeast cells escaping into the fluid surrounding cells or, remarkably, directly into other host cells through cell-to-cell transmission, continuing to avoid detection by using this extremely rapid vomocytosis," said Hansong Ma. "Worryingly, this enables the cryptococci to avoid antifungal drugs and other treatments as well as our normal immune system, and may allow the yeast to become latent, achieving a long-term infectious state which could then be spread even further, to other individuals, without anyone realising."

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>