Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catalysis: Ready for a close-up

30.08.2012
The latest advance in imaging technology helps optimize catalysts for use in onboard fuel processing. A*STAR researchers have identified the subtle, atomic-scale structural transformations that can activate and de-activate gold nanoparticle catalysts, a finding that may lead to longer-lasting hydrogen fuel cells.

The presence of carbon monoxide (CO) impurities in hydrogen gas (H2) can have a detrimental impact on the performance of fuel cells. Recent studies have shown that gold nanoparticles — particles less than five nanometers wide — can catalytically remove CO impurities from H2 under mild temperature and pressure conditions.

This breakthrough understanding has helped facilitate the development of fuel-cell vehicles that use ‘onboard’ fuel processing technology. Unfortunately, gold nanoparticles tend to lose their catalytic activity after a few hours of use — and scientists need to overcome this problem if gold nanoparticles are to be used.

Ziyi Zhong at the A*STAR Institute of Chemical and Engineering Sciences, Ming Lin at the A*STAR Institute of Materials Research and Engineering and co-workers have identified the subtle, atomic-scale structural transformations that can activate and de-activate gold nanoparticle catalysts, a finding that may lead to longer-lasting hydrogen fuel cells.

The researchers set out to design an improved catalyst for so-called preferential oxidation (PROX) reactions. This approach transforms CO impurities into carbon dioxide (CO2) on a ceramic support containing metal catalysts. Previously, the team found that silica-based supports, called SBA-15, could boost CO removal by selectively absorbing the CO2 by-product. The researchers took advantage of another SBA-15 characteristic — a mesoporous framework decorated by terminal amine groups — to engineer a novel PROX catalyst.

First, the team used amine modification to disperse a mixture of gold and copper(II) oxide (CuO) precursors evenly over the SBA-15 support. They then used heating treatment to generate gold and CuO nanoparticles on the SBA-15 support. The numerous pores in SBA-15 and the CuO particles work together to hinder agglomeration of gold nanoparticles — a major cause of catalyst de-activation.

The team then achieved a near-unprecedented chemical feat: localized structural characterization of their catalyst at atomic scale, using high-resolution transmission electron microscopy (HR-TEM) and three-dimensional electron tomography (see movie below). These imaging techniques revealed that the active catalyst sites — gold or gold–copper alloy nanoparticles in the immediate vicinity of amorphous and crystalline CuO — remained stable for up to 13 hours. However, the reducing atmosphere eventually transforms CuO into copper(I) oxide and free copper; the latter of which then alloys with the gold nanoparticles and deactivates them. Fortunately, heating to >300°C reversed the alloying process and restored the catalyst’s activity.

“People working in catalysis are always curious about the ‘local structures’ of their materials,” says Zhong. “Because the Au-CuO/SBA-15 catalyst is active at room temperature, advanced characterization in our state-of-the-art facilities is possible — though it takes great patience and requires multidisciplinary collaboration.”
The A*STAR-affiliated researchers contributing to this research are from the Institute of Chemical and Engineering Sciences and the Institute of Materials Research and Engineering

References:

Li, X., Fang, S. S. S., Teo, J., Foo, Y. L., Borgna, A. et al. Activation and deactivation of Au–Cu/SBA-15 catalyst for preferential oxidation of CO in H2-rich gas. ACS Catalysis 2, 360–369 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>