Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catalysis: Ready for a close-up

30.08.2012
The latest advance in imaging technology helps optimize catalysts for use in onboard fuel processing. A*STAR researchers have identified the subtle, atomic-scale structural transformations that can activate and de-activate gold nanoparticle catalysts, a finding that may lead to longer-lasting hydrogen fuel cells.

The presence of carbon monoxide (CO) impurities in hydrogen gas (H2) can have a detrimental impact on the performance of fuel cells. Recent studies have shown that gold nanoparticles — particles less than five nanometers wide — can catalytically remove CO impurities from H2 under mild temperature and pressure conditions.

This breakthrough understanding has helped facilitate the development of fuel-cell vehicles that use ‘onboard’ fuel processing technology. Unfortunately, gold nanoparticles tend to lose their catalytic activity after a few hours of use — and scientists need to overcome this problem if gold nanoparticles are to be used.

Ziyi Zhong at the A*STAR Institute of Chemical and Engineering Sciences, Ming Lin at the A*STAR Institute of Materials Research and Engineering and co-workers have identified the subtle, atomic-scale structural transformations that can activate and de-activate gold nanoparticle catalysts, a finding that may lead to longer-lasting hydrogen fuel cells.

The researchers set out to design an improved catalyst for so-called preferential oxidation (PROX) reactions. This approach transforms CO impurities into carbon dioxide (CO2) on a ceramic support containing metal catalysts. Previously, the team found that silica-based supports, called SBA-15, could boost CO removal by selectively absorbing the CO2 by-product. The researchers took advantage of another SBA-15 characteristic — a mesoporous framework decorated by terminal amine groups — to engineer a novel PROX catalyst.

First, the team used amine modification to disperse a mixture of gold and copper(II) oxide (CuO) precursors evenly over the SBA-15 support. They then used heating treatment to generate gold and CuO nanoparticles on the SBA-15 support. The numerous pores in SBA-15 and the CuO particles work together to hinder agglomeration of gold nanoparticles — a major cause of catalyst de-activation.

The team then achieved a near-unprecedented chemical feat: localized structural characterization of their catalyst at atomic scale, using high-resolution transmission electron microscopy (HR-TEM) and three-dimensional electron tomography (see movie below). These imaging techniques revealed that the active catalyst sites — gold or gold–copper alloy nanoparticles in the immediate vicinity of amorphous and crystalline CuO — remained stable for up to 13 hours. However, the reducing atmosphere eventually transforms CuO into copper(I) oxide and free copper; the latter of which then alloys with the gold nanoparticles and deactivates them. Fortunately, heating to >300°C reversed the alloying process and restored the catalyst’s activity.

“People working in catalysis are always curious about the ‘local structures’ of their materials,” says Zhong. “Because the Au-CuO/SBA-15 catalyst is active at room temperature, advanced characterization in our state-of-the-art facilities is possible — though it takes great patience and requires multidisciplinary collaboration.”
The A*STAR-affiliated researchers contributing to this research are from the Institute of Chemical and Engineering Sciences and the Institute of Materials Research and Engineering

References:

Li, X., Fang, S. S. S., Teo, J., Foo, Y. L., Borgna, A. et al. Activation and deactivation of Au–Cu/SBA-15 catalyst for preferential oxidation of CO in H2-rich gas. ACS Catalysis 2, 360–369 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>