Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Case of Mistaken Identity Leads to Much-Needed Drug Target Against MRSA, Gram-Positive Infections

03.02.2015

The increasing prevalence of antibiotic resistance, when infectious bacteria evolve to evade drugs designed to control them, is a pressing public health concern. Each year two million Americans acquire antibiotic-resistant infections, leading to 23,000 deaths. In light of these unsettling statistics, there has been a call to develop new weapons to combat bacterial threats to human health.

Scientists at the University of Utah and the University of Georgia have uncovered a pharmacological target that could enable development of novel drugs against antibiotic-resistant pathogens, including Methicillin-resistant Staphylococcus aureus (MRSA) and other infectious Gram-positive organisms such as Listeria and Mycobacterium tuberculosis.


by NIAID_Flickr. Licensed under CC BY 2.0 via Wikimedia Commons –

Scanning electron micrograph of Methicillin-resistant Staphylococcus aureus (MRSA) and a dead Human neutrophil

The target was revealed upon discovery of a Gram-positive bacteria-specific pathway for making heme, an essential iron-carrying molecule. The findings were reported in the journal, Proceedings of the National Academy of Sciences (PNAS).

“The therapeutic target could be used to create a completely new class of drugs for fighting Gram-positive bacteria including those that cause antibiotic-resistant infections,” says John Phillips, Ph.D., senior author of the paper and research professor in hematology at the University of Utah School of Medicine.

The fortuitous discovery was an outcome of a quest to solve a case of mistaken identity. For the past 100 years, the prevailing notion was that every organism – from bacteria to man – used the same eight-step recipe to make the essential, snowflake-shaped iron transporter, heme.

That’s why Harry Dailey, Ph.D., first author and biochemistry professor at the University of Georgia, was puzzled when he noticed that proteins that were given the name HemN, a key component of the historically-defined heme pathway, looked very different in Gram-positive bacteria than in other classes of bacteria. The code of amino acids – building blocks of proteins – that were recorded as Gram-positive “HemN” didn’t match up with the rest.

“It made me wonder, ‘What do we know, as opposed to what do we think we know?’” recalled Harry Dailey, Ph.D., first author and professor of biochemistry at the University of Georgia.

In the lab, he found that the so-called Gram-positive bacteria “Heme N” was, in fact, incapable of making heme. Determined to figure out what substitutes for HemN, Dailey collaborated with Phillips to purify components of the heme pathway in Gram-positive bacteria.

Like figuring out how to make a cake by seeing how it looks after each step of the recipe is completed, they collected the intermediates of the heme pathway, and determined that the last three were completely different than expected. Biochemical experiments further showed that a Gram-positive specific enzyme called HemQ is required for the final step. A survey of heme pathway components in over 350 other organisms support the idea that only Gram-positive bacteria use the alternate, HemQ-dependent recipe for making heme.

The implications were immediately obvious to Dailey and Phillips. “A drug that disables HemQ, will knock out heme biosynthesis only in Gram-positive bacteria, sparing this important pathway in our own cells,” explains Dailey. He has already demonstrated that genetically eliminating HemQ severely disables the troublesome germs, suggesting a drug that targets the protein will do the same. If screens against existing compounds identify one that is capable of blocking HemQ, a drug could be available in as quickly as two years; development of a new antibiotic could take ten years.

“The original goal of this work was to sort out the naming of different bacterial genes, but the result was identifying a completely new metabolic pathway that can be exploited to improve healthcare,” says Phillips. “It’s a reminder that, to paraphrase Louis Pasteur, chance favors the prepared mind.”

The study was supported by the National Institutes of Health.

Co-authors include Tamara Dailey and Joseph Burch of the University of Georgia, and Svetlana Gerdes of the Argonne National Laboratory.

Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin. PNAS Early Edition, Feb. 2, 2015

Contact Information
Julie Kiefer
Communications Specialist
jkiefer@neuro.utah.edu
Phone: 801-597-4258

Julie Kiefer | newswise
Further information:
http://unews.utah.edu/

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

A new dead zone in the Indian Ocean could impact future marine nutrient balance

06.12.2016 | Earth Sciences

Significantly more productivity in USP lasers

06.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>