Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Caribbean's native predators unable to stop aggressive lionfish population growth

"Ocean predator" conjures up images of sharks and barracudas, but the voracious red lionfish is out-eating them all in the Caribbean – and Mother Nature appears unable to control its impact on local reef fish.

That leaves human intervention as the most promising solution to the problem of this highly invasive species, said researchers at the University of North Carolina at Chapel Hill.

"Lionfish are here to stay, and it appears that the only way to control them is by fishing them," said John Bruno, professor of biology in UNC's College of Arts and Sciences and lead investigator of the study. The research has important implications not just for Caribbean reefs, but for the North Carolina coast, where growing numbers of lionfish now threaten local fish populations.

"Native predators do not influence invasion success of Pacific lionfish on Caribbean reefs" was published July 11 by the journal PLOS ONE.

Lionfish, native to the Indo-Pacific region, have long been popular aquarium occupants, with their striking stripes and soft, waving fins. They also have venomous spines, making them unpleasant fare for predators, including humans—though once the spines are carefully removed, lionfish are generally considered safe to eat, Bruno said.

They have become big marine news as the latest invasive species to threaten existing wildlife populations. Bruno likened their extraordinary success to that of ball pythons, now eating their way through Florida Everglades fauna, with few predators other than alligators and humans.

"When I began diving 10 years ago, lionfish were a rare and mysterious species seen deep within coral crevices in the Pacific Ocean," said Serena Hackerott, lead author and master's student in marine sciences, also in UNC's College of Arts and Sciences. "They can now been seen across the Caribbean, hovering above the reefs throughout the day and gathering in groups of up to ten or more on a single coral head."

The international research team looked at whether native reef predators such as sharks and groupers could help control the population growth of red lionfish in the Caribbean, either by eating them or out-competing them for prey. They also wanted to evaluate scientifically whether, as some speculate, that overfishing of reef predators had allowed the lionfish population to grow unchecked.

The team surveyed 71 reefs, in three different regions of the Caribbean, over three years. Their results indicate there is no relationship between the density of lionfish and that of native predators, suggesting that, "interactions with native predators do not influence" the number of lionfish in those areas, the study said.

The researchers did find that lionfish populations were lower in protected reefs, attributing that to targeted removal by reef managers, rather than consumption by large fishes in the protected areas. Hackerott noted that during 2013 reef surveys, there appeared to be fewer lionfish on popular dive sites in Belize, where divers and reef managers remove lionfish daily.

The researchers support restoration of large-reef predators as a way to achieve better balance and biodiversity, but they are not optimistic that this would affect the burgeoning lionfish population.

"Active and direct management, perhaps in the form of sustained culling, appears to be essential to curbing local lionfish abundance and efforts to promote such activities should be encouraged," the study concluded.

Bruno acknowledged the key contributions of Hackerott, who performed the work in his lab as part of her UNC undergraduate honors thesis. Click here for Hackerott's blog about her senior-year research experiences.

Other study participants were researchers from Simon Fraser University, British Columbia; Reef Environmental Education Foundation; Florida International University; National Oceanic and Atmospheric Administration—Florida Keys National Marine Sanctuary; and Dial Cordy & Associates, Miami.

Link to PLOS ONE publication:

Note: Professor Bruno may be reached by email,, or Twitter: @johnfbruno

Images: High-resolution images may be found here:
Lead author and UNC student Serena Hackerott and her study organism; photo credit: Katie DuBois
Lionfish close up 1; photo credit: Abel Valdivia;
Lionfish close up 2; photo credit: Walter Hackerott
Video of the team's work may be found at Sharks, grouper and lionfish coexisting in peace and harmony at Gardens of the Queen reef, Cuba. Shot by John Bruno, May 2011.

UNC News Services contact: Kathy Neal, interim health and science editor, or (919) 740-5673 (cell).

Kathy Neal | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>