Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Capturing Chromosomes during Cell Division

14.03.2012
Scientists of the Biozentrum, University of Basel, have been successful in elucidating a new mechanism for the error-free segregation of the human genome during cell division.

Dr. Ying Wai Chan and Dr. Anna Santamaria, scientists from Prof. Erich Nigg’s research group, have been able to show that the enzyme Aurora B and the protein complex Ska play a central role in flawless chromosome segregation. These findings, also relevant to cancer research, have now been published in the current issue of «Journal of Cell Biology».


Spindle apparatus (left): Aurora B regulates the Ska complex. The chromosomes (blue) can be captured by the spindle fibres (green) at the attachment points (red). Spindle apparatus (right): Aurora B can’t regulate the Ska complex. Aurora B can’t fix the attachment points (red) between chromosomes (blue) and spindle fibres (green). (Photo: University of Basel)

The human body grows by cells dividing and multiplying. In this highly complex process, flaws may occur, which are responsible for the development of tumor cells. To ensure the error-free division of the cell, the genetic material of the cell – consisting of 23 pairs of chromosomes – must be divided evenly into two new daughter cells.

Prof. Erich Nigg’s research group has been able to show how the enzyme Aurora B, important for cell proliferation, ensures the error-free separation of the chromosomes. Aurora B regulates the interaction between two protein complexes (Ska complex and KMN complex) with the spindle apparatus, the molecular machine that drives cell division.

Aurora B determines the point in time and tensile strength

During cell division, the spindle apparatus produces spindle fibres. They reach out from two poles and each attaches to one sister chromosome. These are then pulled apart in opposite directions and incorporated into two daughter cells. “How the spindle fibre attaches to a chromosome is critical for the whole process“, explains Dr. Anna Santamaria. She and her co-workers have investigated the mechanism regulating how chromosomes get captured by the spindle fibres. The team found that, by regulating the protein complex Ska, the enzyme Aurora B determines the strength of the bond as well as the timing for optimal adhesion of the spindle fibres. Both must be exactly right to ensure that all sister chromosomes are correctly transferred to the two new daughter cells.

Tumor cells through errors in cell division

Should an error occur in this control mechanism, it could result in a chromosome being mis-segregated. Such cells could then develop into tumor cells and lead to cancer. Hence, the findings offer also insights which may lead to new approaches in cancer research. In collaboration with Prof. Elena Conti’s research group at the Max Planck Institute for Biochemistry in Martinsried, Erich Nigg’s team is concentrating its efforts on elucidating the structure of the Ska complex. The results so far look very promising and this spring another publication is expected.

Original article
Ying Wai Chan, A. Arockia Jeyaprakash, Erich A. Nigg, and Anna Santamaria
Aurora B controls kinetochore–microtubule attachments by inhibiting Ska complex–KMN network interaction

J Cell Biol, Published online February 27, 2012. doi:10.1083/jcb.201109001

Contact
Prof. Dr. Erich Nigg, Biozentrum der Universität Basel, Tel. +41 61 267 16 56 (direkt), Tel. 41 61 267 20 66 (Sekretariat), E-Mail: erich.nigg@unibas.ch

Heike Sacher | Universität Basel
Further information:
http://jcb.rupress.org/content/196/5/563
http://www.biozentrum.unibas.ch/research/groups-platforms/overview/unit/nigg/

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>