Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Capturing Chromosomes during Cell Division

Scientists of the Biozentrum, University of Basel, have been successful in elucidating a new mechanism for the error-free segregation of the human genome during cell division.

Dr. Ying Wai Chan and Dr. Anna Santamaria, scientists from Prof. Erich Nigg’s research group, have been able to show that the enzyme Aurora B and the protein complex Ska play a central role in flawless chromosome segregation. These findings, also relevant to cancer research, have now been published in the current issue of «Journal of Cell Biology».

Spindle apparatus (left): Aurora B regulates the Ska complex. The chromosomes (blue) can be captured by the spindle fibres (green) at the attachment points (red). Spindle apparatus (right): Aurora B can’t regulate the Ska complex. Aurora B can’t fix the attachment points (red) between chromosomes (blue) and spindle fibres (green). (Photo: University of Basel)

The human body grows by cells dividing and multiplying. In this highly complex process, flaws may occur, which are responsible for the development of tumor cells. To ensure the error-free division of the cell, the genetic material of the cell – consisting of 23 pairs of chromosomes – must be divided evenly into two new daughter cells.

Prof. Erich Nigg’s research group has been able to show how the enzyme Aurora B, important for cell proliferation, ensures the error-free separation of the chromosomes. Aurora B regulates the interaction between two protein complexes (Ska complex and KMN complex) with the spindle apparatus, the molecular machine that drives cell division.

Aurora B determines the point in time and tensile strength

During cell division, the spindle apparatus produces spindle fibres. They reach out from two poles and each attaches to one sister chromosome. These are then pulled apart in opposite directions and incorporated into two daughter cells. “How the spindle fibre attaches to a chromosome is critical for the whole process“, explains Dr. Anna Santamaria. She and her co-workers have investigated the mechanism regulating how chromosomes get captured by the spindle fibres. The team found that, by regulating the protein complex Ska, the enzyme Aurora B determines the strength of the bond as well as the timing for optimal adhesion of the spindle fibres. Both must be exactly right to ensure that all sister chromosomes are correctly transferred to the two new daughter cells.

Tumor cells through errors in cell division

Should an error occur in this control mechanism, it could result in a chromosome being mis-segregated. Such cells could then develop into tumor cells and lead to cancer. Hence, the findings offer also insights which may lead to new approaches in cancer research. In collaboration with Prof. Elena Conti’s research group at the Max Planck Institute for Biochemistry in Martinsried, Erich Nigg’s team is concentrating its efforts on elucidating the structure of the Ska complex. The results so far look very promising and this spring another publication is expected.

Original article
Ying Wai Chan, A. Arockia Jeyaprakash, Erich A. Nigg, and Anna Santamaria
Aurora B controls kinetochore–microtubule attachments by inhibiting Ska complex–KMN network interaction

J Cell Biol, Published online February 27, 2012. doi:10.1083/jcb.201109001

Prof. Dr. Erich Nigg, Biozentrum der Universität Basel, Tel. +41 61 267 16 56 (direkt), Tel. 41 61 267 20 66 (Sekretariat), E-Mail:

Heike Sacher | Universität Basel
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>