Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer-causing gut bacteria exposed

22.09.2008
Normal gut bacteria are thought to be involved in colon cancer but the exact mechanisms have remained unknown.

Now, scientists from the USA have discovered that a molecule produced by a common gut bacterium activates signalling pathways that are associated with cancer cells. The research, published in the October issue of the Journal of Medical Microbiology, sheds light on the way gut bacteria can cause colon cancer.

There are more bacteria in our bodies than there ever have been people on the Earth. In fact, there are more bacteria in the colon than there are human cells in our bodies. Most of the bacteria in our guts are harmless and many are beneficial to our health. However, for several decades scientists have thought that some microbes living in the gut may play a role in the formation of sporadic colorectal cancer.

Enterococcus faecalis is a normal gut bacterium. Unlike most gut bacteria, it can survive using two different types of metabolism: respiration and fermentation. When the bacteria use fermentation they release by-products. One of these is a kind of oxygen molecule called superoxide, which can damage DNA and may play a role in the formation of colon tumours.

"We wanted to investigate how colon cells respond to normal gut bacteria that can damage DNA, like E. faecalis," said Professor Mark Huycke from the Department of Veterans Affairs Medical Center in Olklahoma City, USA. "We found that superoxide from E. faecalis led to strong signalling in immune cells called macrophages. It also altered the way some cells in the gut grew and divided and even increased the productivity of genes that are associated with cancer."

The team found that 42 genes in epithelial cells in the gut are involved in the regulation of the cell cycle, cell death and signalling based on the unique metabolism of E. faecalis. This suggests that cells of the lining of the colon are rapidly affected when E. faecalis switches to fermentation. It also indicates that E. faecalis may have developed novel mechanisms to encourage colon cells to turn cancerous.

Intestinal cancers occur almost exclusively in the colon where billions of bacteria are in contact with the gut surface. For years scientists have tried to identify links between gut bacteria and people who are at risk of colon cancer. This has been made difficult by the enormous complexity of the microbial communities in the intestine.

"Our findings are among the first to explore mechanisms by which normal gut bacteria damage DNA and alter gene regulation in the colon that might lead to cancer," said Professor Huycke. "This research puts n to perspective the complexity of the effects normal gut bacteria can have on the health of an individual."

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk/
http://www.sgm.ac.uk/pubs

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>