Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer biologists find DNA-damaging toxins in common plant-based foods

28.03.2013
Liquid smoke, black and green teas and coffee produced levels of cell DNA damage comparable to chemo drugs

In a laboratory study pairing food chemistry and cancer biology, scientists at the Johns Hopkins Kimmel Cancer Center tested the potentially harmful effect of foods and flavorings on the DNA of cells. They found that liquid smoke flavoring, black and green teas and coffee activated the highest levels of a well-known, cancer-linked gene called p53.

The p53 gene becomes activated when DNA is damaged. Its gene product makes repair proteins that mend DNA. The higher the level of DNA damage, the more p53 becomes activated.

"We don't know much about the foods we eat and how they affect cells in our bodies," says Scott Kern, M.D., the Kovler Professor of Oncology and Pathology at the Johns Hopkins University School of Medicine. "But it's clear that plants contain many compounds that are meant to deter humans and animals from eating them, like cellulose in stems and bitter-tasting tannins in leaves and beans we use to make teas and coffees, and their impact needs to be assessed."

Kern cautioned that his studies do not suggest people should stop using tea, coffee or flavorings, but do suggest the need for further research.

The Johns Hopkins study began a year ago when graduate student Samuel Gilbert, working in Kern's laboratory, noted that a test Kern had developed to detect p53 activity had never been used to identify DNA-damaging substances in food.

For the study, published online February 8 in Food and Chemical Toxicology, Kern and his team sought advice from scientists at the U.S. Department of Agriculture about food products and flavorings. "To do this study well, we had to think like food chemists to extract chemicals from food and dilute food products to levels that occur in a normal diet," he says.

Using Kern's test for p53 activity, which makes a fluorescent compound that "glows" when p53 is activated, the scientists mixed dilutions of the food products and flavorings with human cells and grew them in laboratory dishes for 18 hours.

Measuring and comparing p53 activity with baseline levels, the scientists found that liquid smoke flavoring, black and green teas and coffee showed up to nearly 30-fold increases in p53 activity, which was on par with their tests of p53 activity caused by a chemotherapy drug called etoposide.

Previous studies have shown that liquid smoke flavoring damages DNA in animal models, so Kern's team analyzed p53 activity triggered by the chemicals found in liquid smoke. Postdoctoral fellow Zulfiquer Hossain tracked down the chemicals responsible for the p53 activity. The strongest p53 activity was found in two chemicals: pyrogallol and gallic acid. Pyrogallol, commonly found in smoked foods, is also found in cigarette smoke, hair dye, tea, coffee, bread crust, roasted malt and cocoa powder, according to Kern. Gallic acid, a variant of pyrogallol, is found in teas and coffees.

Kern says that more studies are needed to examine the type of DNA damage caused by pyrogallol and gallic acid, but there could be ways to remove the two chemicals from foods and flavorings.

"We found that Scotch whiskey, which has a smoky flavor and could be a substitute for liquid smoke, had minimal effect on p53 activity in our tests," says Kern.

Liquid smoke, produced from the distilled condensation of natural smoke, is often used to add smoky flavor to sausages, other meats and vegan meat substitutes. It gained popularity when sausage manufacturers switched from natural casings to smoke-blocking artificial casings.

Other flavorings like fish and oyster sauces, tabasco and soy sauces, and black bean sauces showed minimal p53 effects in Kern's tests, as did soybean paste, kim chee, wasabi powder, hickory smoke powders and smoked paprika.

Funding for the study was provided by the National Institutes of Health's National Cancer Institute (CA62924) and the Everett and Marjorie Kovler Professorship in Pancreas Cancer Research.

In addition to Kern, Gilbert and Hossain, other scientists involved in the research include Kalpesh Patel, Soma Ghosh, and Anil Bhunia from Johns Hopkins.

On the Web: hopkinscancer.org

Media Contacts:
Vanessa Wasta, 410-614-2916
wasta@jhmi.edu
Amy Mone, 410-614-2915
amone@jhmi.edu

Vanessa Wasta | EurekAlert!
Further information:
http://www.jhmi.edu

Further reports about: Cancer DNA DNA-damaging food products gallic acid human cell p53 activity

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>