Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cancer and Vampires: An Evolutionary Approach


New Internet tool combines genomics and informatics to enable investigators, physicians or patients to analyze genes according to their evolutionary profiles and find associated genes

Two major revolutions, one genomic and one in informatics, are completely changing the face of biomedical research. Every day all over the world, millions of genetic sequences — from disease-related genes to complete genomes of plants, animals, bacteria and viruses — are resolved, identified and dissected.

Dr. Yuval Tabach at the Hebrew University’s Institute for Medical Research Israel Canada has developed a new Internet tool that will allow any investigator, physician or patient to analyze a gene according to its evolutionary profile and find associated genes. (Photo credit: The Hebrew University of Jerusalem)

One of the most fascinating applications of the available information stemming from different organisms is the possibility to identify novel disease-related genes and predict their biological functions. The technique is simple and based on the fact that genes that work together or those that play an important role in biology will be present together in organisms that need them.

Conversely, genes connected to a particular function like vision will disappear from species that have lost the power of sight, and may therefore be identified by a comparison to the genes in normal animals.

Now, Dr. Yuval Tabach, a researcher from IMRIC — the Institute for Medical Research Israel Canada in the Hebrew University of Jerusalem’s Faculty of Medicine, has developed a new Internet tool that will allow any investigator, physician or patient to analyze a gene according to its evolutionary profile.

Dr. Tabach’s application is a product of his continuing research, which he began as a Fellow at Harvard University in collaboration with researchers and physicians from all over the world. This research revealed the possibility of comparing the evolutionary profiles derived from multiple organisms to predict the biological functions and clinical relevance of given genes. One of the most important applications of this approach is the possibility to identify genes associated with genetic diseases and cancer.

One example of a known mutation which increases the likelihood of developing breast and ovarian cancers is in the BRCA1 gene. Interest in this gene was highlighted when, in 2013, Angelina Jolie, having discovered that she had inherited the dangerous mutation from her mother who died of cancer aged 56, decided to undergo a preventative double mastectomy. However in the majority of cases, both for breast cancer and other genetically transmitted diseases, the identity of the gene responsible is unknown.

By using the methods of genetic analysis developed by Dr. Tabach, researchers can now identify genes within the same network as the BRCA1 gene, or other associations of genes, simply by scanning the evolutionary profiles of tens of organisms with a single click. The number of organisms that can be scanned in this way is anticipated to increase to hundreds in the near future.

“The significance of this tool is that anyone, physician or researcher, can input results from genetic mapping studies concerning suspected genes, and the tool will identify evolutionary, and probably functional, connections to known genes with association to diseases” explains Dr. Tabach. “The process is rapid, without cost or time wasted, and enables the identification of genes responsible for diseases.”

An interesting example of a gene that could be identified using this phylogenetic profiling approach is the so-called “Vampire’s Disease,” more professionally termed porphyria. Representing a family of genetic diseases characterized by abdominal pain, sensitivity to sunlight, purple urine, and psychotic episodes, porphyria probably forms the basis for the prevalent myths of vampires.

These diseases are rare, but there is evidence for hereditary porphyria in European royal families, and it may have been responsible for the madness of King George III as well as for the psychotic behavior of the painter Vincent Van Gogh, misdiagnosed as a depressive schizophrenic. Dr. Tabach demonstrated how, with one click, it is possible to identify essentially all the genes known to be associated with porphyria as well as other genes that, based on their phylogenetic profile, are very likely to be involved.

The bioinformatics methods developed by Dr. Tabach have formed the basis for the establishment of a company dealing with computational pharmaceutics which will identify new indications for existing therapeutic agents. This could dramatically decrease the time and expense required to bring a new drug to market, and facilitate the development of treatments for rare orphan diseases.

In the coming years, Dr. Tabach’s laboratory intends to focus on the identification of genes that prevent aging and protect against cancer, by consideration of the genes of some fascinating species of organisms with increased longevity and an almost complete resistance to cancer. In addition the laboratory is working with a model which describes almost 40 neurological diseases with a related etiology including Huntington’s disease, ataxia, and fragile X syndrome.

The research paper, co-authored with collaborators from Massachusetts General Hospital and Harvard Medical School in Boston, appears in the journal Nucleic Acids Research as “PhyloGene server for identification and visualization of coevolving proteins using normalized phylogenetic profiles” (doi: 10.1093/nar/gkv452).

Support for the research came from Hebrew University of Jerusalem start-up funds.

The Institute for Medical Research-Israel Canada (IMRIC), in the Hebrew University of Jerusalem's Faculty of Medicine, is one of the most innovative biomedical research organizations in Israel and worldwide. IMRIC brings together the most brilliant scientific minds to find solutions to the world's most serious medical problems, through a multidisciplinary approach to biomedical research. More information at 

The Hebrew University of Jerusalem is Israel’s leading academic and research institution, producing one-third of all civilian research in Israel. For more information, visit 

To contact the researchers: Dr. Yuval Tabach,

For more information:

Dov Smith
Hebrew University of Jerusalem
+972-2-5882844 / +972-54-8820860

Dov Smith | Hebrew University of Jerusalem

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>