Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Canadian scientists identify a spontaneously chain-reacting molecule

13.12.2010
A promising boost for nano-circuitry

In the burgeoning field of nano-science there are now many ways of 'writing' molecular-scale messages on a surface, one molecule at a time. The trouble is that writing a molecule at a time takes a very long time.

"It is much better if the molecules can be persuaded to gather together and imprint an entire pattern simultaneously, by themselves. One such pattern is an indefinitely long line, which can then provide the basis for the ultimately thin molecular 'wire' required for nano-circuitry," says John Polanyi of the University of Toronto's Department of Chemistry, co- author of the paper to be published on Nature Chemistry this week.

The paper describes, for the first time, a simple molecule that each time it chemically reacts with a surface prepares a hospitable neighbouring site at which the next incoming molecule reacts. Accordingly, these molecules, when simply dosed (blindly) on the surface, spontaneously grow durable 'molecular-chains'. These molecular chains are the desired prototypes of nano-wires.

The experiments were conducted by graduate student Tingbin Lim in the John Polanyi Scanning Tunneling Microscopy laboratory at U of T, in conjunction with theory performed by postdoctoral fellow Dr. Wei Ji in the Hong Guo laboratory in the Department of Physics, McGill University. The experiments in Toronto yielded visual evidence of the chains, and the theory at McGill explained why the chains spontaneously grew.

"Early-on, far-sighted Xerox Research Centre Canada (XRCC) recognized this opportunity for imprinting patterns at the molecular scale, thereby persuading Ontario Centres of Excellence (OCE) and the federal Natural Sciences and Engineering Research Council (NSERC), through its Strategic Grant program, to fund the bulk of the research costs in our lab," says Polanyi.

"The experiments constituted the doctoral work of a recent PhD student in the Toronto laboratory, Dr. Tingbin Lim an outstanding student who came from Singapore to join our group and now makes his home as a scientist in Canada."

Dr. Wei Ji who did much of the calculations at McGill has returned to his native China where he has been appointed a full Professor. He remains in close collaborative touch with his colleagues at McGill and also in Toronto, to the benefit of all three locales.

The paper, entitled "Surface-mediated chain reaction through dissociative attachment" will be published on Nature Chemistry's website on December 12 at 1 pm Eastern time.

Authors are John C. Polanyi and Tingbin Lim of U of T's Department of Chemistry and Institute of Optical Science and Jong Guo and Wei Ji of the Centre for the Physics of Materials and the Department of Physics, McGill University.

The research was supported by the NSERC, Photonics Research Ontario (PRO), an Ontario Centre of Excellence (OCE), the Canadian Institute for Photonic Innovation (CIPI), the Xerox Research Centre Canada (XRCC), Fonds de Recherche sur la Nature et les Technologies (FQRNT) of Quebec and the Canadian Institute for Advanced Research (CIFAR).

Kim Luke | EurekAlert!
Further information:
http://www.utoronto.ca

Further reports about: CHEMISTRY Canadian Light Source Centre McGill NSERC Nature Immunology OCE Ontario Photonic Polanyi Science TV XRCC Xerox

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>