Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Canadian scientists identify a spontaneously chain-reacting molecule

13.12.2010
A promising boost for nano-circuitry

In the burgeoning field of nano-science there are now many ways of 'writing' molecular-scale messages on a surface, one molecule at a time. The trouble is that writing a molecule at a time takes a very long time.

"It is much better if the molecules can be persuaded to gather together and imprint an entire pattern simultaneously, by themselves. One such pattern is an indefinitely long line, which can then provide the basis for the ultimately thin molecular 'wire' required for nano-circuitry," says John Polanyi of the University of Toronto's Department of Chemistry, co- author of the paper to be published on Nature Chemistry this week.

The paper describes, for the first time, a simple molecule that each time it chemically reacts with a surface prepares a hospitable neighbouring site at which the next incoming molecule reacts. Accordingly, these molecules, when simply dosed (blindly) on the surface, spontaneously grow durable 'molecular-chains'. These molecular chains are the desired prototypes of nano-wires.

The experiments were conducted by graduate student Tingbin Lim in the John Polanyi Scanning Tunneling Microscopy laboratory at U of T, in conjunction with theory performed by postdoctoral fellow Dr. Wei Ji in the Hong Guo laboratory in the Department of Physics, McGill University. The experiments in Toronto yielded visual evidence of the chains, and the theory at McGill explained why the chains spontaneously grew.

"Early-on, far-sighted Xerox Research Centre Canada (XRCC) recognized this opportunity for imprinting patterns at the molecular scale, thereby persuading Ontario Centres of Excellence (OCE) and the federal Natural Sciences and Engineering Research Council (NSERC), through its Strategic Grant program, to fund the bulk of the research costs in our lab," says Polanyi.

"The experiments constituted the doctoral work of a recent PhD student in the Toronto laboratory, Dr. Tingbin Lim an outstanding student who came from Singapore to join our group and now makes his home as a scientist in Canada."

Dr. Wei Ji who did much of the calculations at McGill has returned to his native China where he has been appointed a full Professor. He remains in close collaborative touch with his colleagues at McGill and also in Toronto, to the benefit of all three locales.

The paper, entitled "Surface-mediated chain reaction through dissociative attachment" will be published on Nature Chemistry's website on December 12 at 1 pm Eastern time.

Authors are John C. Polanyi and Tingbin Lim of U of T's Department of Chemistry and Institute of Optical Science and Jong Guo and Wei Ji of the Centre for the Physics of Materials and the Department of Physics, McGill University.

The research was supported by the NSERC, Photonics Research Ontario (PRO), an Ontario Centre of Excellence (OCE), the Canadian Institute for Photonic Innovation (CIPI), the Xerox Research Centre Canada (XRCC), Fonds de Recherche sur la Nature et les Technologies (FQRNT) of Quebec and the Canadian Institute for Advanced Research (CIFAR).

Kim Luke | EurekAlert!
Further information:
http://www.utoronto.ca

Further reports about: CHEMISTRY Canadian Light Source Centre McGill NSERC Nature Immunology OCE Ontario Photonic Polanyi Science TV XRCC Xerox

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>