Camera flash turns an insulating material into a conductor

A Northwestern University professor and his students have found a new way of turning graphite oxide — a low-cost insulator made by oxidizing graphite powder — into graphene, a hotly studied material that conducts electricity. Scientists believe graphene could be used to produce low-cost carbon-based transparent and flexible electronics.

Previous processes to reduce graphite oxide relied on toxic chemicals or high-temperature treatment. The idea for a simple new process came in a burst of inspiration: Can a camera flash instantly heat up the graphite oxide and turn it into graphene?

The process, invented by Jiaxing Huang, assistant professor of materials science and engineering at Northwestern's McCormick School of Engineering and Applied Science, and his graduate student Laura J. Cote and postdoctoral fellow Rodolfo Cruz-Silva, was published in the Aug. 12 issue of the Journal of the American Chemical Society.

Materials scientists previously have used high-temperature heating or chemical reduction to produce graphene from graphite oxide. But these techniques could be problematic when graphite oxide is mixed with something else, such as a polymer, because the polymer component may not survive the high-temperature treatment or could block the reducing chemical from reacting with graphite oxide.

In Huang's flash reduction process, researchers simply hold a consumer camera flash over the graphite oxide and, a flash later, the material is now a piece of fluffy graphene.

“The light pulse offers very efficient heating through the photothermal process, which is rapid, energy efficient and chemical-free,” he says.

When using a light pulse, photothermal heating not only reduces the graphite oxide, it also fuses the insulating polymer with the graphene sheets, resulting in a welded conducting composite.

Using patterns printed on a simple overhead transparency film as a photo-mask, flash reduction creates patterned graphene films. This process creates electronically conducting patterns on the insulating graphite oxide film — essentially a flexible circuit.

The research group hopes to next create smaller circuits on a single graphite-oxide sheet at the single-atom layer level. (The current process has been performed only on thicker films.)

“If we can make a nano circuit on a single piece of graphite oxide,” Huang says, “it will hold great promise for patterning electronic devices.”

Media Contact

Megan Fellman EurekAlert!

More Information:

http://www.northwestern.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors