Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caltech researchers pinpoint neurons that control obesity in fruit flies

20.08.2009
Research could lead to the development of a new model for the study of human obesity and its treatment

A team of scientists from the California Institute of Technology (Caltech) have pinpointed two groups of neurons in fruit fly brains that have the ability to sense and manipulate the fly's fat stores in much the same way as do neurons in the mammalian brain.

The existence of this sort of control over fat deposition and metabolic rates makes the flies a potentially useful model for the study of human obesity, the researchers note.

Their findings were published in the August 13 issue of the journal Neuron.

By manipulating neural activity in fruit fly brains using transgenic techniques, the researchers found that, "just as in mammals, fly fat-store levels are measured and controlled by specific neurons in the brain," says Caltech postdoctoral scholar Bader Al-Anzi, the Neuron paper's first author. "Silencing these neurons created obese flies, while overactivating them produced lean flies."

Mammalian brains are given information about the body's fat stores by hormones such as leptin and insulin, and respond to that information by inducing changes in food intake and metabolism to maintain a constant body weight. The researchers found that similar behavioral and metabolic changes occurred in the fruit flies, though which changes occurred depended on which of the two sets of newly identified neurons was silenced.

For instance, silencing one group of neurons led to an increase in food intake, a decrease in metabolism, and an increase in the synthesis of fatty acids (the building blocks of fat). Silencing the other group led to a similar decrease in metabolism and increase in fatty-acid synthesis, as well as to a defect in the flies' ability to utilize their fat stores.

Increasing activity in either of the groups of neurons, on the other hand, resulted in depletion of fat stores by increasing the flies' metabolism and decreasing their synthesis of fatty acids.

The next step is to "see exactly how neurons regulate fat storage, and how the two different groups of neurons identified in this study work," says Kai Zinn, professor of biology at Caltech, who led the research group. "They clearly regulate fat storage using different mechanisms."

The paper is the result of research originally led by Caltech biologist Seymour Benzer, a pioneer in the study of genes and behavior. Zinn continued this research after Benzer's death in late 2007.

"The goal was to establish a model system for obesity in humans," Zinn explains. "This could, at some point, eventually define new drug targets."

The search for a model system is critical, adds Al-Anzi. With obesity on the rise—statistics say that more than a third of adults in Western society are overweight—efforts to find its roots in human brains or human genes have similarly increased. Unfortunately, Al-Anzi notes, these efforts "have not been extremely successful."

In addition, says Al-Anzi, "While mammalian models such as the mouse have provided progress in the field, they tend to be difficult and expensive research subjects."

Thus, he notes, "The obesity research field would benefit greatly if another model organism could be used, one that is accessible for easy, fast, and affordable biomedical research methods. We believe the fruit fly can be such an organism.

"There is a surprising amount of overlap between the simple fruit fly and more complex mammals in many basic biological processes," Al-Anzi adds. "This is why it's an excellent model system for exploring such medically relevant issues as Alzheimer's disease, alcoholism, and addiction. Our results thus far suggest that body-weight regulation will be no different."

Having now established that fruit flies are indeed similar to mammals in the way they control fat deposition via the brain, researchers can begin to test antiobesity dietary or drug treatments on flies whose fat-regulating neurons have been silenced. "Treatments that cause these flies to return to normal body weight could then be retested for their effectiveness in a mammalian obesity model," Al-Anzi notes.

Knowing the neurons involved in the regulation of fat storage could also lead to identifying the genes that allow for the critical communications between the brain and the fat stores. "This can be done by identifying the genes that are selectively expressed only in those neurons," he explains.

In addition, this research should help researchers determine if the mechanisms behind appetite and body-weight regulation in fruit flies have been conserved over evolutionary time and throughout the animal kingdom. "This has been shown to be the case for genes that regulate behavioral phenomena like learning and circadian rhythms," notes Al-Anzi, "and we hope that body-weight and appetite regulation will be no different."

In addition to Al-Anzi, Zinn, and Benzer, other authors on the Neuron paper, "Obesity-blocking neurons in Drosophila," include Caltech research technician Viveca Sapin; Christopher Waters, formerly of Caltech; and biologist Robert Wyman from Yale University.

Their research was supported by a Life Sciences Research Foundation grant provided by Bristol-Myers Squibb to Al-Anzi, and by a National Institutes of Health RO1 grant to Benzer.

Lori Oliwenstein | EurekAlert!
Further information:
http://www.caltech.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>