Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caltech biologists discover how T cells make a commitment

02.07.2010
When does a cell decide its particular identity? According to biologists at the California Institute of Technology (Caltech), in the case of T cells—immune system cells that help destroy invading pathogens—the answer is when the cells begin expressing a particular gene called Bcl11b.

The activation of Bcl11b is a "clean, nearly perfect indicator of when cells have decided to go on the T-cell pathway," says Ellen Rothenberg, the Albert Billings Ruddock Professor of Biology at Caltech and senior author of a paper about the discovery that appears in the July 2 issue of the journal Science. The paper, coauthored by Caltech postdoctoral scholar Long Li, is one of three in the issue to examine this powerful gene.

The Bcl11b gene produces what is known as a transcription factor—a protein that controls the activity of other genes. Specifically, the gene is a repressor, which means it shuts off other genes. This is crucial for T cells, because T cells are derived from multipotent hematopoietic stem cells—stem cells that express a wide variety of genes and have the capacity to differentiate into a host of other blood cell types, including the various cells of the immune system.

"Stem cells and their multipotent descendents follow one set of growth rules, and T cells another," says Rothenberg, "so if T-cell precursors don't give up certain stem-cell functions, bad things happen." Like stem cells, T cells have a remarkable ability to grow—but as part of their T-cell-ness, she says, they do so "under incredibly strict regulation. Their growth is restricted unless certain conditions are met." The cells need to shift their growth-control rules during development; after development, because they still need to grow, the cells and their daughters need an active mechanism to make the change irreversible. Bcl11b is a long-sought part of that mechanism.

"For cells that never divide again, maintaining identity is trivial. What they are at that moment is what they are forever," Rothenberg says. Once T cells mature, their abilities to keep dividing and migrating around the body also give them the opportunity to have their daughters adopt different roles in the immune system as they encounter and interact with other types of cells. "Even so, their central T-cell nature remains unchanged, which means that they must have a strong sense of identity," she adds.

The conversion from T-cell precursors to actual T cells takes place in the thymus, a specialized organ located near the heart. "When the future T cells move into the thymus," Rothenberg explains, "they are expressing a variety of genes that give them the option to become other cells," such as mast cells (which are involved in allergic reactions), killer cells (which kill cells infected by viruses), and antigen-presenting cells (which help T cells recognize targeted foreign cells).

As they enter the thymus, the organ sends molecular signals to the cells, directing them down the T-cell pathway. At this point, the Rothenberg lab found, the Bcl11b gene gets turned on. Li, the lead author on the Science paper, found that this confirms the T cells' identity by blocking other pathways. The Bcl11b protein is also needed for the cells to make the break from their stem-cell heritage. "It is like a switch that allows the cells to shut off stem-cell genes and other regulatory genes," Rothenberg says. "It keeps them clean—and may be necessary to 'guard' the T cell from becoming some other type of cell."

Although it is thought that many genes are involved in the process of creating and maintaining T cells, "Bcl11b is the only regulatory gene in the whole genome to be turned on at this stage," she adds, "and it is probably always active in all T cells. It is the most T-cell specific of all of the regulatory factors discovered so far." Among blood cells, this gene is only expressed in T cells, she says. "The gene is used in other cells in completely different types of tissue, such as brain and skin and mammary tissue, but that's how the body works. There's no confusion, because something like brain tissue and mammary tissue will never be a T cell."

When Bcl11b is not present—as in mice genetically altered to lack the gene—T cells "don't turn out right," Rothenberg says. Indeed, T cells in individuals with T-cell leukemia have been found to lack the gene. "It may make them more susceptible to the effects of radiation, because the cells don't know when to stop growing," she says. "We think that the loss of one of the two copies of the gene is enough to prevent cells from growing appropriately."

The work in the paper, "An Early T Cell Lineage Commitment Checkpoint Dependent on the Transcription Factor Bcl11b" —coauthored by Rothenberg, Li, and Mark Leid of Oregon State University—was supported by a California Institute for Regenerative Medicine fellowship to Li, and by the National Institutes of Health, the Caltech–City of Hope Biomedical Research Initiative, the Louis A. Garfinkle Memorial Laboratory Fund, the Al Sherman Foundation, and the Albert Billings Ruddock Professorship.

Visit the Caltech Media Relations website at http://media.caltech.edu.

Kathy Svitil | EurekAlert!
Further information:
http://www.caltech.edu

Further reports about: Bcl11b Science TV T cells allergic reaction blood cell cell type immune system stem cells

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>