Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Calcium waves help the roots tell the shoots

04.04.2014

For Simon Gilroy, sometimes seeing is believing. In this case, it was seeing the wave of calcium sweep root-to-shoot in the plants the University of Wisconsin-Madison professor of botany is studying that made him a believer.

Gilroy and colleagues, in a March 24, 2014 paper in the Proceedings of the National Academy of Sciences, showed what long had been suspected but long had eluded scientists: that calcium is involved in rapid plant cell communication.

It's a finding that has implications for those interested in how plants adapt to and thrive in changing environments. For instance, it may help agricultural scientists understand how to make more salt- or drought-tolerant plants.

"How do you think plants live?" Gilroy asks. "If I poke you, I see an instant response. You move away. Plants live in a slightly different world. They are rooted to the ground, literally, and they respond to the world either by growing or creating chemicals."

Calcium is involved in transmitting information in the cells of humans and other animals, contracting muscles, sending nerve signals and more.

In plants, scientists believed it had to also play a role in processing information and sending rapid signals so that plants can respond quickly to their environments.

Imagine you are a plant being eaten by a caterpillar: "It's like a lion chewing your leg," says Gilroy. "If an insect is chewing your leaf, you're gone unless you determine something effective immediately."

But no one had ever been able to see it before. Even Gilroy's team found it by accident.

The team was using a specific calcium sensor they thought wasn't going to work. They speculated it could serve as a control in their studies.

The sensor's brightness changes in the presence of calcium, displayed on screen as a change from green to red through a process known as fluorescence resonance energy transfer, or FRET. Typically, this particular sensor is so sensitive to calcium it is nearly always red.

But when researchers applied stress to the tip of a plant's roots — a high concentration of sodium chloride salt — it triggered a wave of red that traveled rapidly from the root to the top of the plant.

"We were kind of like, 'Why is it even working?' says Gilroy. "It was probably telling us we were looking in the wrong realm. It's like we could only hear the people shouting and we couldn't hear the talking."

The calcium wave, a flush of red on an otherwise green palette, traveled on a scale of milliseconds, traversing about eight plant cells per second — too quick to be explained by simple diffusion of salt.

"It fit with a lot of our models," Gilroy says. "But the idea that it's a wave is one step beyond what our models would predict."

Within 10 minutes of applying a small amount of salt to the plants' roots, typical stress response genes were turned on in the plant.

Also turned on was the machinery to make more of a protein channel called two pore channel 1 (TPC1). Within one-to-two minutes, there was 10 times more of the building blocks needed to make the channel, which is thought to be involved in calcium signaling.

Gilroy and his team then looked at plants with a defect in TPC1. They had a much slower calcium wave — about 25 times slower — than plants with normal TPC1. When they studied plants expressing more of the TPC1 protein, the calcium wave moved 1.7 times faster.

Plants with more channels also grew larger and contained more chlorophyll than plants with normal or mutated TPC1 when grown in salt water.

The protein channel is present in all land plants, says Gilroy, and it's found throughout the plant. This is one of the many reasons it surprised the team to learn the calcium wave moves only through specific cells in the plant, like electrical signals moving through nerve cells in humans and other animals.

"We weren't expecting that," Gilroy says. "It means specific cell types have specific functions … there must be something special about those cells. We're really at the beginning."

The lab is now looking at the molecular machinery that makes up TPC1, to figure out how the parts of the channel work.

And now that the scientists know that calcium talks, the volume is turned up. The work is just getting started.

"We can hear the screaming," says Gilroy. "Now we're trying to see what the vocal chords are doing."

###

Kelly April Tyrrell, 608-262-9772, april@wisc.edu

Simon Gilroy | EurekAlert!
Further information:
http://www.wisc.edu

Further reports about: Calcium Plants Wisconsin-Madison animals environments machinery shoots signals waves

More articles from Life Sciences:

nachricht Aromatic couple makes new chemical bonds
30.06.2015 | Institute of Transformative Bio-Molecules (ITbM), Nagoya University

nachricht Breaking through a double wall with a sledgehammer
29.06.2015 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

Im Focus: Lasers for Fast Internet in Space – Space Technology from Aachen

On June 23, the second Sentinel mission was launched from the space mission launch center in Kourou. A critical component of Aachen is on board. Researchers at the Fraunhofer Institute for Laser Technology ILT and Tesat-Spacecom have jointly developed the know-how for space-qualified laser components. For the Sentinel mission the diode laser pump module of the Laser Communication Terminal LCT was planned and constructed in Aachen in cooperation with the manufacturer of the LCT, Tesat-Spacecom, and the Ferdinand Braun Institute.

After eight years of preparation, in the early morning of June 23 the time had come: in Kourou in French Guiana, the European Space Agency launched the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

3D Plasmonic Antenna Capable of Focusing Light into Few Nanometers

30.06.2015 | Physics and Astronomy

X-rays and electrons join forces to map catalytic reactions in real-time

30.06.2015 | Physics and Astronomy

A polarizing view

30.06.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>