Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How calcium ions control muscle power

30.11.2009
Innovative microscope sheds unique light on muscle cells

The penetration of calcium ions, which cause muscle cells to contract, is visible under a TIRF microscope. This innovative microscope, funded by the Swiss National Science Foundation (SNSF), sheds unique light on what sets healthy muscles apart from diseased ones.

Calcium ions play a crucial role in muscle cells. When the ions accumulate, they indicate there is work to be done to the muscle cells and that they should therefore contract. As a result, it comes as no surprise that disorders in the calcium balance of muscle cells are the root causes of different muscle diseases.

If the calcium ions exceed a critical concentration, in the case of heat stroke (or in medical terminology: malign hyperthermia) for instance, they trigger an uncontrolled muscle reaction that may be fatal. Because muscle cells develop heat and finally die off if they remain active for too long a period.

Calcium ions penetrate the cell interior via two routes: they are either released inside from the muscle cells' storage chambers or penetrate the cell envelope from outside.

Susan Treves of the Biomedicine Department at the University of Basel examines what goes on around the cell envelope with the help of an innovative device, the TIRF microscope (TIRF stands for Total Internal Reflection Fluorescence). The microscope exploits the fact that light beams, shed at an angle, are totally reflected on optical interfaces. The light beam is therefore captured in the glass slide and only the cell envelope in direct contact with the slide is illuminated.

Consequently, Susan Treves has proved that more calcium ions penetrate the muscle cells of patients with muscle diseases from outside than the muscle cells of healthy persons. Besides the different release from the storage chambers, the changed flow of calcium ions through the cell envelope is now therefore also considered as a potential cause of muscle diseases.

As a result, these diseases appear to have several triggers. These findings do push the prospect of discovering a single drug to cure all muscle diseases into the distant future, but nevertheless a more exact appreciation of the calcium balance of muscle cells aims to help as many patients as possible some day.

Contact
Dr. Susan Treves
Biomedicine Department
University Hospital of Basel
Hebelstrasse 20
4031 Basel
Tel.: +41 61 265 23 73
Email: susan.treves@unibas.ch

| idw
Further information:
http://www.snsf.ch
http://www.unibas.ch

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>