Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Butterfly Wings Can Inspire New High-Tech Surfaces

08.11.2012
A South American butterfly flapped its wings, and caused a flurry of nanotechnology research to happen in Ohio.

Researchers here have taken a new look at butterfly wings and rice leaves, and learned things about their microscopic texture that could improve a variety of products.



For example, the researchers were able to clean up to 85 percent of dust off a coated plastic surface that mimicked the texture of a butterfly wing, compared to only 70 percent off a flat surface.

In a recent issue of the journal Soft Matter, the Ohio State University engineers report that the textures enhance fluid flow and prevent surfaces from getting dirty – characteristics that could be mimicked in high-tech surfaces for aircraft and watercraft, pipelines, and medical equipment.

“Nature has evolved many surfaces that are self-cleaning or reduce drag,” said Bharat Bhushan, Ohio Eminent Scholar and Howard D. Winbigler Professor of mechanical engineering at Ohio State. “Reduced drag is desirable for industry, whether you’re trying to move a few drops of blood through a nano-channel or millions of gallons of crude oil through a pipeline. And self-cleaning surfaces would be useful for medical equipment – catheters, or anything that might harbor bacteria.”

Bhushan and doctoral student Gregory Bixler used an electron microscope and an optical profiler to study wings of the Giant Blue Morpho butterfly (Morpho didius) and leaves of the rice plant Oriza sativa. They cast plastic replicas of both microscopic textures, and compared their ability to repel dirt and water to replicas of fish scales, shark skin, and plain flat surfaces.

Common to Central and South America, the Blue Morpho is an iconic butterfly, prized for its brilliant blue color and iridescence. Beyond its beauty, it has the ability to cast off dirt and water with a flutter of its wings.

For a butterfly out in nature, staying clean is a critical issue, Bhushan explained.

“Their wings are so delicate that getting dirt or moisture on them makes it hard to fly,” he said. “Plus, males and females recognize each other by the color and patterns on their wings, and every species is unique. So they have to keep their wings bright and visible in order to reproduce.”

The electron microscope revealed that the Blue Morpho’s wings aren’t as smooth as they look to the naked eye. Instead, the surface texture resembles a clapboard roof with rows of overlapping shingles radiating out from the butterfly’s body, suggesting that water and dirt roll off the wings “like water off a roof,” Bhushan said.

The rice leaves provided a more surreal landscape under the microscope, with rows of micrometer- (millionths of a meter) sized grooves, each covered with even smaller, nanometer- (billionths of a meter) sized bumps – all angled to direct raindrops to the stem and down to the base of the plant. The leaf also had a slippery waxy coating, which keeps the water droplets flowing along.

The researchers wanted to test how butterfly wings and rice leaves might display some of the characteristics of other surfaces they’ve studied, such as shark skin, which is covered with slippery, microscopic grooves that cause water to flow smoothly around the shark. They also tested fish scales, and included non-textured flat surfaces for comparison.

After studying all the textures close up, the researchers made molds of them in silicone and cast plastic replicas. To emulate the waxy coating on the rice leaves and the slippery coating on shark skin (which in nature is actually mucous), they covered all the surfaces with a special coating consisting of nanoparticles.

In one test, they lined plastic pipes with the different coated textures and pushed water through them. The resulting water pressure drop in the pipe was an indication of fluid flow.

For a pipe about the size of a cocktail straw, a thin lining of shark skin texture coated with nanoparticles reduced water pressure drop by 29 percent compared to the non-coated surface. The coated rice leaf came in second, with 26 percent, and the butterfly wing came in third with around 15 percent.

Then they dusted the textures with silicon carbide powder – a common industrial powder that resembles natural dirt – and tested how easy the surfaces were to clean. They held the samples at a 45-degree angle and dripped water over them from a syringe for two minutes, so that about two tablespoons of water washed over them in total. Using software, they counted the number of silicon carbide particles on each texture before and after washing.

The shark skin came out the cleanest, with 98 percent of the particles washing off during the test. Next came the rice leaf, with 95 percent, and the butterfly wing with about 85 percent washing off. By comparison, only 70 percent washed off of the flat surface.

Bushan thinks that the rice leaf texture might be especially suited to helping fluid move more efficiently through pipes, such as channels in micro-devices or oil pipelines.

As to the Blue Morpho’s beautiful wings, their ability to keep the butterfly clean and dry suggests to him that the clapboard roof texture might suit medical equipment, where it could prevent the growth of bacteria.

This research was funded by the National Science Foundation.

Contact: Bharat Bhushan, (614) 292-0651; Bhushan.2@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu
Editor's note: Images are available from Pam Frost Gorder.

Pam Frost Gorder | EurekAlert!
Further information:
http://www.osu.edu
http://researchnews.osu.edu/archive/butterflynano.htm

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>