Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BUSM Study Identifies Pathology of Huntington’s Disease

18.10.2012
A study led by researchers at Boston University School of Medicine (BUSM) provides novel insight into the impact that Huntington’s disease has on the brain. The findings, published online in Neurology, pinpoint areas of the brain most affected by the disease and opens the door to examine why some people experience milder forms of the disease than others.
Richard Myers, PhD, professor of neurology at BUSM, is the study’s lead/corresponding author. This study, which is the largest to date of brains specific to Huntington’s disease, is the product of nearly 30 years of collaboration between the lead investigators at BUSM and their colleagues at the McLean Brain Tissue Resource Center, Massachusetts General Hospital and Columbia University.

Huntington’s disease (HD) is an inherited and fatal neurological disorder that typically is diagnosed when a person is approximately 40 years old. The gene responsible for the disease was identified in 1993, but the reason why certain neurons or brain cells die remains unknown.

The investigators examined 664 autopsy brain samples with HD that were donated to the McLean Brain Bank. They evaluated and scored more than 50 areas of the brain for the effects of HD on neurons and other brain cell types. This information was combined with a genetic study to characterize variations in the Huntington gene. They also gathered the clinical neurological information on the patients’ age when HD symptoms presented and how long the patient survived with the disease.

Based on this analysis, the investigators discovered that HD primarily damages the brain in two areas. The striatum, which is located deep within the brain and is involved in motor control and involuntary movement, was the area most severely impacted by HD. The outer cortical regions, which are involved in cognitive function and thought processing, also showed damage from HD, but it was less severe than in the striatum.

The investigators identified extraordinary variation in the extent of cell death in different brain regions. For example, some individuals had extremely severe outer cortical degeneration while others appeared virtually normal. Also, the extent of involvement for these two regions was remarkably unrelated, where some people demonstrated heavy involvement in the striatum but very little involvement in the cortex, and vice versa.

“There are tremendous differences in how people with Huntington’s disease are affected,” Myers said. “Some people with the disease have more difficulty with motor control than with their cognitive function while others suffer more from cognitive disability than motor control issues.”

When studying these differences, the investigators noted that the cell death in the striatum is heavily driven by the effects of variations in the Huntington gene itself, while effects on the cortex were minimally affected by the HD gene and are thus likely to be a consequence of other unidentified causes. Importantly, the study showed that some people with HD experienced remarkably less neuronal cell death than others.

“While there is just one genetic defect that causes Huntington’s disease, the disease affects different parts of the brain in very different ways in different people,” said Myers. “For the first time, we can measure these differences with a very fine level of detail and hopefully identify what is preventing brain cell death in some individuals with HD.”

The investigators have initiated extensive studies into what genes and other factors are associated with the protection of neurons in HD, and they hope these protective factors will point to possible novel treatments.

This research was supported by the National Institute of Neurological Disorders and Stroke under award number R01NS073947 and the Jerry McDonald Huntington’s Disease Research Fund.

Jenny Eriksen Leary | EurekAlert!
Further information:
http://www.bmc.org

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>