Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BUSM Study Identifies Pathology of Huntington’s Disease

18.10.2012
A study led by researchers at Boston University School of Medicine (BUSM) provides novel insight into the impact that Huntington’s disease has on the brain. The findings, published online in Neurology, pinpoint areas of the brain most affected by the disease and opens the door to examine why some people experience milder forms of the disease than others.
Richard Myers, PhD, professor of neurology at BUSM, is the study’s lead/corresponding author. This study, which is the largest to date of brains specific to Huntington’s disease, is the product of nearly 30 years of collaboration between the lead investigators at BUSM and their colleagues at the McLean Brain Tissue Resource Center, Massachusetts General Hospital and Columbia University.

Huntington’s disease (HD) is an inherited and fatal neurological disorder that typically is diagnosed when a person is approximately 40 years old. The gene responsible for the disease was identified in 1993, but the reason why certain neurons or brain cells die remains unknown.

The investigators examined 664 autopsy brain samples with HD that were donated to the McLean Brain Bank. They evaluated and scored more than 50 areas of the brain for the effects of HD on neurons and other brain cell types. This information was combined with a genetic study to characterize variations in the Huntington gene. They also gathered the clinical neurological information on the patients’ age when HD symptoms presented and how long the patient survived with the disease.

Based on this analysis, the investigators discovered that HD primarily damages the brain in two areas. The striatum, which is located deep within the brain and is involved in motor control and involuntary movement, was the area most severely impacted by HD. The outer cortical regions, which are involved in cognitive function and thought processing, also showed damage from HD, but it was less severe than in the striatum.

The investigators identified extraordinary variation in the extent of cell death in different brain regions. For example, some individuals had extremely severe outer cortical degeneration while others appeared virtually normal. Also, the extent of involvement for these two regions was remarkably unrelated, where some people demonstrated heavy involvement in the striatum but very little involvement in the cortex, and vice versa.

“There are tremendous differences in how people with Huntington’s disease are affected,” Myers said. “Some people with the disease have more difficulty with motor control than with their cognitive function while others suffer more from cognitive disability than motor control issues.”

When studying these differences, the investigators noted that the cell death in the striatum is heavily driven by the effects of variations in the Huntington gene itself, while effects on the cortex were minimally affected by the HD gene and are thus likely to be a consequence of other unidentified causes. Importantly, the study showed that some people with HD experienced remarkably less neuronal cell death than others.

“While there is just one genetic defect that causes Huntington’s disease, the disease affects different parts of the brain in very different ways in different people,” said Myers. “For the first time, we can measure these differences with a very fine level of detail and hopefully identify what is preventing brain cell death in some individuals with HD.”

The investigators have initiated extensive studies into what genes and other factors are associated with the protection of neurons in HD, and they hope these protective factors will point to possible novel treatments.

This research was supported by the National Institute of Neurological Disorders and Stroke under award number R01NS073947 and the Jerry McDonald Huntington’s Disease Research Fund.

Jenny Eriksen Leary | EurekAlert!
Further information:
http://www.bmc.org

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>