Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building a Better Protein

25.02.2009
Rensselaer researchers use computers to find keys to stabilizing proteins

Proteins are widely viewed as a promising alternative to synthetic chemicals in everything from medications to hand lotion.

The naturally occurring molecules have been shown to be more efficient and effective than many of the most sophisticated chemical compounds on the market. But outside the controlled confines of the lab bench, proteins quickly change structure, causing irreversible damage to their functionality and often safety.

Scientists are now searching for ways to increase the stability of proteins. In new research published Feb. 5 in the online Early Edition of the Proceedings of the National Academy of Sciences (PNAS), Rensselaer Senior Constellation Professor George Makhatadze and his colleagues detail a targeted strategy to substantially increase the thermodynamic stability of nearly any protein, while preserving its unique function. Their redesign technique creates proteins that remain stable at temperatures 10 degrees Celsius higher than normal.

To achieve these results, the researchers used high-powered computers to create new and improved versions of two human enzymes. The enzymes are specific types of protein. The two enzymes in the study vary widely in size and functionality, yet both showed substantial increases in stability without loss of function in the body. This supports the idea that the stability of many other proteins could also be greatly stabilized, according to Makhatadze. The researchers are now looking to use the technique to improve that stability of specific proteins with strong industrial and drug development applications.

They developed a computational approach that altered the proteins’ structure and tested it for increased stability. “Our experimental validation of computational results is actually motivated by Thomas Edison, who wrote, ‘Until man duplicates a blade of grass, nature will laugh at his so-called scientific knowledge,’” Makhatadze said.

“There are several viable approaches to optimize proteins,” Makhatadze added. “Many researchers seek to optimize the protein by changing all types of physical interactions within the computer model at once. Instead, we felt that if we could understand one interaction, we could then use it to our advantage to build on the algorithm and then experimentally prove that that property really exists in the real protein system.”

The interaction the researchers focused on was the surface charge of the protein. The investigation of the importance of protein surface structure is a growing area of research within the field. In fact, a 2006 paper in the journal Biochemistry, published by Makhatadze supporting the importance of protein surface structure on stability, was the one of the top five most cited and downloaded papers from the journal that year.

In addition to important potential industrial applications, Makhatadze also believes the research sheds some light on the evolution of proteins. The researchers compared the mutations that they made within the proteins in order to optimize the protein’s performance with the mutations naturally occurring in the proteins from the evolutionary distant organisms. Instead of seeing more mutations along with increased performance as with most evolutionary adaptations, the researchers saw that less frequent mutations resulted in a more stable protein. “This suggests that the stability of proteins might not be evolutionarily important,” he said. “It appears that as soon as the protein is able to function in given conditions and is stable at a given temperature, anything above that is not really necessary.”

The research was fully funded by the National Science Foundation (NSF). Makhatadze was assisted in his research by post-doctoral researcher Mayank Patel, graduate student Jiajing Liu, NMR Core Director Scott McCallum, and Assistant Professor of Biology Chunyu Wang, all of Rensselaer, as well as former graduate student Alexey Gribenko, who is currently a member of the faculty at the University of Texas Medical Branch. In addition, the structure of one the proteins used in the study, acylphosphatase (AcPh), was actually solved at Rensselaer using the sophisticated nuclear magnetic resonance (NMR) core within the Center for Biotechnology and Interdisciplinary Studies (CBIS).

Gabrielle DeMarco | EurekAlert!
Further information:
http://ww.rpi.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>