Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bugs need symbiotic bacteria to exploit plant seeds

09.01.2013
While common firebugs have no impact on humans, their relatives, the cotton stainers, are serious agricultural pests. Researchers at the Max Planck Institute for Chemical Ecology in Jena, Germany, recently discovered that these bugs need bacterial symbionts to survive on cotton seeds as their sole food source.

Removal of the symbionts or reciprocal exchange of bacteria between firebugs and cotton stainers led to high mortality and low mating success, demonstrating the importance of the bacterial helpers for growth and reproduction. Thus, symbiotic bacteria constitute a key factor not only for the ecological success of firebugs but also for the pest status of cotton stainers.


The African cotton stainer (Dysdercus fasciatus) cultivates bacterial symbionts in its mid-gut that are necessary for growth and reproduction.
Photo: MPI for Chemical Ecology/Kaltenpoth


Firebugs (Pyrrhocoris apterus)
Photo: MPI for Chemical Ecology/Kaltenpoth

Aggregations of the red and black colored firebugs are ubiquitous under linden trees in Central Europe, where the bugs can reach astounding population densities. While these insects have no impact on humans, their African, Asian, and American relatives, the cotton stainers, are serious agricultural pests of cotton and other Malvaceous plants. Researchers at the Max Planck Institute for Chemical Ecology in Jena, Germany, recently discovered that these bugs need bacterial symbionts to survive on cotton seeds as their sole food source.

By using high-throughput sequencing technologies, they found out that firebugs and cotton stainers share a characteristic bacterial community that colonizes a specific region of their mid-gut. Removal of the symbionts or reciprocal exchange of bacteria between firebugs and cotton stainers led to high mortality and low mating success, demonstrating the importance of the bacterial helpers for growth and reproduction. Thus, symbiotic bacteria constitute a key factor not only for the ecological success of firebugs but also for the pest status of cotton stainers. (Molecular Ecology, December 2012; Environmental Microbiology, in press)

With more than 80,000 described species, the true bugs represent one of the five megadiverse insect orders on earth. Many species are serious agricultural pests that are responsible for significant losses in crop production. Among these are cotton stainers, bugs of the family Pyrrhocoridae that damage cotton by feeding on the seed bolls and leaving indelible stains in the harvested crop. While previous research on sap-sucking insects demonstrated that they rely on microbial symbionts for nutrition, it remained unknown how cotton stainers and other seed-feeding bugs exploit Malvaceous plant seeds that are rich in toxic secondary metabolites, but poor in some essential nutrients.

Scientists of the Insect Symbiosis Research Group at the Max Planck Institute for Chemical Ecology set out to address this question and elucidate the possible role of symbiotic bacteria in the nutrition of firebugs and cotton stainers. By using high-throughput sequencing technologies and deciphering almost 300,000 copies of bacterial 16S rRNA genes, they discovered that the bugs cultivate a characteristic community of three to six bacterial symbionts in a specific mid-gut region. “The symbionts are transferred to the eggs by female bugs, and the hatchlings later take them up by probing the egg surface,” explains Sailendharan Sudakaran, PhD student in the Insect Symbiosis Group. “This guarantees that the bugs maintain the symbionts throughout their entire life and pass them on to the next generation.” Bugs from different localities and even across different species showed very similar microbial communities, indicating that the bugs have been associated with their symbionts over millions of years.

To find out whether the bacterial symbionts help the bugs to survive on the plant seeds as their sole food source, the researchers performed a simple yet elegant experiment: They dipped bug eggs into bleach and ethanol and thereby killed the microbial community on the surface without harming the developing egg itself. Some of the eggs were then re-infected with a mixture of bacteria from an adult bug’s gut, while others remained symbiont-free. Interestingly, the symbiont-free individuals showed markedly higher mortality, needed longer to develop into adults, and produced much fewer offspring than bugs with their native symbionts. “Symbiont-free bugs showed clear signs of malnutrition, although they were fed on the same plant seeds as their symbiont-bearing counterparts. This can only be explained by an important contribution of the bacteria towards host nutrition”, says Hassan Salem, another PhD student in the group. Surprisingly, exchanging bacterial communities between firebugs and cotton stainers also resulted in reduced fitness of both species, indicating that – despite their similarity – the symbioses are highly specific.

The next important steps will be to find out whether the bacterial symbionts provide essential nutrients to their hosts that are lacking in the seed diet, or whether they help by detoxifying the noxious defensive chemicals of the plant. “Firebugs and cotton stainers are ideal model systems to address fundamental questions in insect symbiosis, because we can manipulate and exchange their microbial communities and then measure the fitness of the hosts,” explains Martin Kaltenpoth, head of the Max Planck Research Group Insect Symbiosis. “Detailed knowledge on how insects interact with microbial symbionts is essential for an understanding of insect physiology, ecology, and evolution.”

In the case of agricultural pest insects like the cotton stainers, this knowledge may also provide novel leads for biological control. [MK]

Original Publications:
Sudakaran, S., Salem, H., Kost, C. & Kaltenpoth, M. (2012) Geographic and ecological stability of the symbiotic mid-gut microbiota in European firebugs, Pyrrhocoris apterus (Hemiptera; Pyrrhocoridae). Molecular Ecology 21: 6134-6151.
http://dx.doi.org/10.1111/mec.12027
Salem, H., Kreutzer, E., Sudakaran, S. & Kaltenpoth, M. (in press) Actinobacteria as essential symbionts in firebugs and cotton stainers (Hemiptera, Pyrrhocoridae). Environmental Microbiology, DOI:10.1111/1462-2920.12001

http://dx.doi.org/10.1111/1462-2920.12001

Further Information:
Dr. Martin Kaltenpoth, +49 3641 57-1800, mkaltenpoth@ice.mpg.de
Picture and Movie Requests:
Angela Overmeyer M.A., +49 3641 57-2110, overmeyer@ice.mpg.de
or Download via http://www.ice.mpg.de/ext/735.html

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:
http://www.ice.mpg.de
http://www.ice.mpg.de/ext/976.html?&L=0

More articles from Life Sciences:

nachricht New method opens crystal clear views of biomolecules
11.02.2016 | Deutsches Elektronen-Synchrotron DESY

nachricht Scientists from MIPT gain insights into 'forbidden' chemistry
11.02.2016 | Moscow Institute of Physics and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

New method opens crystal clear views of biomolecules

11.02.2016 | Life Sciences

Scientists take nanoparticle snapshots

11.02.2016 | Physics and Astronomy

NASA sees development of Tropical Storm 11P in Southwestern Pacific

11.02.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>