Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In Bubble-Rafting Snails, the Eggs Came First

12.10.2011
It's "Waterworld" snail style: Ocean-dwelling snails that spend most of their lives floating upside down, attached to rafts of mucus bubbles.

Scientists have known about the snails' peculiar lifestyle since the 1600s, but they've wondered how the rafting habit evolved. What, exactly, were the step-by-step adaptations along the way?


Denis Riek
Two female bubble-rafting violet snails, Janthina exigua. Scientists believe the bubble float evolved from an ancestral egg mass. Egg capsules are attached to the underside of the floats.
Current Biology (Oct. 11, 2011)

University of Michigan graduate student Celia Churchill and coauthors believe they've found the answer to that intriguing question. In a paper published in the Oct. 11 issue of Current Biology, they show that bubble rafting evolved by way of modified egg masses.

The bubble-rafting snails, members of the family Janthinidae, secrete mucus from their "foot," a broad, muscular organ at the base of the snail's body. But instead of using slime to get around or to communicate chemically, as other types of snails do, they trap air inside quick-setting mucus to make bubbles that glom together and form rafts on which the snails spend the rest of their lives.

"We had a pretty good idea that that janthinids evolved from snails that live on the sea floor," Churchill said. The question was, which specific group of snails gave rise to the janthinids, and how did the janthinid lineage make the transition from bottom dwellers to surface surfers?

To find the answer, Churchill and coauthors first sequenced DNA from janthinids and other snail families thought to be closely related to them and used techniques of molecular phylogenetics to identify the ancestral lineage. They discovered that the rafting snails are descendents of sea-floor snails called wentletraps that parasitize corals and sea anemones. The researchers then asked which specific habits of wentletraps might have morphed over time into raft-building.

"We thought of two possibilities," said Churchill, who did the work under the direction of Diarmaid Ó Foighil, a professor of ecology and evolutionary biology and a curator of mollusks at the U-M Museum of Zoology. "The first was that bubble rafting evolved from juvenile droguing." In many species of marine snails, the juveniles produce a mucus thread called a drogue that helps them drift from place to place like a kite on a string. Adding air-filled mucus bubbles to the drogue thread could result in something resembling a bubble raft.

The other possibility was that rafts represent modified egg masses. In wentletraps, which belong to the family Epitoniidae, females remain on their hosts, attached by stretchy mucus threads to tethered egg masses. These egg masses typically have egg capsules in various stages of development, from newly encased embryos to empty husks, and the researchers reasoned that in an intertidal species, the empty husks might trap air, making the egg mass and attached female temporarily buoyant. As in the drogue scenario, adding mucus-filled bubbles to this ephemeral raft could lead to development of permanent bubble rafts. Either way, getting to the surface would give the snails access to a completion-free food source: floating jellyfish.

To know which scenario was correct, the researchers needed to find a transitional form---a janthinid with characteristics that fall somewhere between the bottom-dwelling epitoniids and the permanently-rafting janthinid known as the common purple snail (Janthina janthina). They got a break when they received a preserved specimen of the rare rafting snail Recluzia from Australia.

"I started to dissect it, and when I pulled the float away I noticed that there were tiny Recluzia on the float and egg capsules of the large female," Churchill said. These hitchhiking juveniles suggested a life history consistent with the egg mass hypothesis. They also suggested an explanation for how the rare Recluzia manages to survive.

"Immediately we started thinking about dwarf males, which are known from a variety of molluscan groups," Churchill said. "If Recluzia has a life history strategy where males remain with females, that might explain how Recluzia can persist at such low densities. When there aren't very many females, remaining with one of them may be the best mating strategy for a male."

The hitchhiking snails were so tiny it was impossible to confirm that they were male, but a recent photograph taken by another researcher clearly shows a larger snail, presumably male, associated with the float of a large female.

Was Recluzia truly the transitional form the researchers were seeking? Or might the transitional form be a species of Janthina, whose juveniles build their own floats, rather than hitchhiking on females' floats---a life history more in line with the juvenile droguing hypothesis? To answer that question, Churchill compared physical characteristics of Recluzia and Janthina with those of the ancestral epitoniids. Recluzia, she found, shares six

characteristics with epitoniids; Janthina has none. This finding points to Recluzia as the transitional form, strongly supporting the egg mass hypothesis.

Churchill and colleagues went on to reconstruct the path that led from egg mass to bubble raft. In the scenario they propose, the ancestors of janthinids lived on the ocean floor, and females formed tethered egg masses with associated males, just as a number of present-day epitoniids do. The egg mass then became modified for buoyancy, resembling a typical Recluzia float, which serves as raft, egg-storage area and platform for juveniles. In the next step, all individuals began making their own floats, so the hitchhikers were lost, but the floats continued to serve as rafts and (in females) egg mass carriers. The present-day species Janthina cf. prolongata and Janthina exigua exemplify this lifestyle.

Finally, the rafts lost their egg-carrying function altogether and came to serve only as floatation devices, as they do in Janthina janthina, in which the female doesn't produce an egg mass at all, but broods the eggs inside her body until they're ready to hatch.

Churchill is working with the Woods Hole Oceanographic Institute's Sea Education Association to create student SEA Semester projects aimed at learning more about the ecology and behavior of rafting snails.

In addition to Churchill and Ó Foighil, the paper's authors include Ellen Strong at the Smithsonian Institution and Adriaan Gittenberger at Leiden University in the Netherlands.

Funding was provided by the Smithsonian Institution, the National Science Foundation and the National Geographic Society.

More information:
Celia Churchill: www.lsa.umich.edu/eeb/directory/graduates/celiakc/default.asp
Diarmaid Ó Foighil: www.lsa.umich.edu/eeb/directory/faculty/diarmaid/default.asp
Current Biology: www.cell.com/current-biology/

Jim Erickson | Newswise Science News
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>