Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brothers in arms: Commensal bacteria help fight viruses

19.06.2012
Healthy humans harbor an enormous and diverse group of bacteria and other bugs that live within their intestines.

These microbial partners provide beneficial aid in multiple ways – from helping digest food to the development of a healthy immune system.


This is an inflamed mouse lung. Infiltrating innate immune cells are stained in red and green. Credit: Meera Nair, PhD, Michael Abt, PhD, David Artis, PhD; Perelman School of Medicine, UPenn

In a new study published online in the journal Immunity, David Artis, PhD, associate professor of Microbiology, and Michael Abt, PhD, a postdoctoral researcher in the Artis lab, Perelman School of Medicine, University of Pennsylvania, show that commensal bacteria are also essential to fight off viral infections.

"From our studies in mice, we found that signals derived from these beneficial microbes are essential for optimal immune responses to experimental viral infections," says Artis. "In one way we could consider these microbes as our 'brothers in arms' in the fight against infectious diseases." Artis is also an associate professor of Pathobiology in the Penn School of Veterinary Medicine.

Signals from commensal bacteria influence immune-cell development and susceptibility to infectious or inflammatory diseases. Commensal microbial communities colonize barrier surfaces of the skin, vaginal, upper respiratory, and gastrointestinal tracts of mammals and consist of bacteria, fungi, protozoa, and viruses. The largest and most diverse microbial communities live in the intestine.

Previous studies in patients have associated alterations in bacterial communities with susceptibility to diabetes, obesity, cancer, inflammatory bowel disease, allergy, and other disorders. Despite knowing all of this, exactly how commensal bacteria regulate immunity after being exposed to pathogens is not well understood.

To get a better picture of how these live-in bacteria are beneficial, the Artis lab used several lines of investigation. First, they demonstrated that mice -- treated with antibiotics to reduce numbers of commensal bacteria -- exhibit an impaired antiviral immune response and a substantially delayed clearance of a systemic virus or influenza virus that infects the airways. What's more, the treated mice had severely damaged airways and increased rate of death after the experimental influenza virus infection, demonstrating that alterations in commensal bacterial communities can have a negative impact on immunity against viruses.

Next, they profiled the genes that were expressed in immune cells called macrophages isolated from the antibiotic-treated mice. These data revealed a decreased expression of genes associated with antiviral immunity. In addition, macrophages from antibiotic-treated mice showed defective responses to interferons, proteins made and released in response to viruses, bacteria, parasites, or tumor cells. Under normal circumstances, interferons facilitate communication between cells to trigger the immune cells that attack pathogens or tumors. The antibiotic-treated mice also had an impaired capacity to limit viral replication. However, when mice were treated with a compound that restored interferon responsiveness, protective antiviral immunity was re-established.

"It is remarkable that signals derived from one type of microbe, in this case bacteria, can have such a profound effect on immune responses to viruses that are a very different type of microbe," says first author Abt. "Just like we would set a thermostat to regulate when a heater should come on, our studies indicate that signals derived from commensal bacteria are required to set the activation threshold of the immune system."

Taken together, these lines of evidence indicate that signals from commensal bacteria beneficially stimulate immune cells in a way that is optimal for antiviral immunity. "Although more work needs to be done, these findings could illuminate new ways to promote better immunity to potentially life-threatening viral infections," adds Artis.

This research is supported by the National Institutes of Health National Institute of Allergy and Infectious Disease(grants AI061570, AI087990, AI074878, AI095608, AI091759, AI095466, AI071309, AI078897, AI095608, AI083022, AI077098, HHSN266200500030C, T32-AI05528, T32-AI007532, T32-RR007063, K08-DK093784, T32-AI007324); the Irvington Institute Postdoctoral Fellowship of the Cancer Research Institute; the Burroughs Wellcome Fund, the National Institute of Diabetes and Digestive and Kidney Disease Center for the Molecular Studies in Digestive and Liver Disease and the Molecular Pathology and Imaging Core.

In addition to Artis and Abt, co-authors are Lisa C. Osborne, Laurel A. Monticelli, Travis A. Doering, Theresa Alenghat, Gregory F. Sonnenberg, Michael A. Paley, Marcelo Antenus, Katie L. Williams, and E. John Wherry, all from Penn, and Jan Erikson from the Wistar Institute.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $479.3 million awarded in the 2011 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital — the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2011, Penn Medicine provided $854 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>