Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Bright Red of Cardinals Means Less in Urban Areas

02.09.2010
Normally, the brilliant red of a male cardinal signals to females that he is a high-quality mate. But that may not be true of cardinals living in urban areas, a new study suggests.

Researchers found that the bright red feather coloration of male northern cardinals (Cardinalis cardinalis) was less related to body condition for birds living in urban forests than it is for those in rural forests. In other words, even cardinals in relatively poor condition may appear bright red in urban areas.

“We found that the relationship between brightness and body condition was stronger in more rural landscapes than it was in urban areas,” said Amanda Rodewald, co-author of the study and professor of wildlife ecology at Ohio State University’s School of Environment and Natural Resources..

“That means urbanization has the potential to disrupt cues that birds have long used to assess quality and choose mates.”

Rodewald conducted the study with Todd Jones, an undergraduate student researcher at the time, and Daniel Shustack, a recent doctoral graduate. Their results appear in the current issue of The Wilson Journal of Ornithology.

The researchers studied 129 male and 145 female cardinals that were captured in 13 forests in central Ohio between 2006 and 2008. Each forest was rated as to the amount of urbanization surrounding it, and the researchers compared feather samples from cardinals at each site.

The feathers were photographed and the photos were analyzed by a software program that measured the hue, saturation and brightness of each feather.

They also measured body mass and size of the cardinals to indicate their body condition, or health. Body condition considers how much a bird weighs after adjusting for its frame size.

The researchers did not find any relation between female body condition and plumage brightness and whether they lived in a more urban or more rural area.

For males, brighter feathers were indicative of birds in better condition in rural areas, but were not as indicative in urban areas.

In cardinals, as in some other birds, feather coloration is related to their diet. Diets high in carotenoids – pigments found in some fruits and other parts of plants – lead to brighter feather colors.

Previous studies indicate that forests within urban areas have nearly three times the amount of fruit and nearby bird feeders than exist in rural areas. Urban forests have many exotic and invasive species, such as Amur honeysuckle and multiflora rose, that provide abundant sources of carotenoid-rich fruits.

The fact that carotenoid-rich fruits are more available in urban areas, to birds over a wide range of conditions, may be one reason that brighter feathers aren’t more indicative of healthy birds in urban areas, Rodewald said. In rural forests, only the highest-quality individuals may have access to carotenoids.

Rodewald is continuing this research by studying how plumage coloration is related to the quality of territories that birds secure and their ability to produce young.

The research was funded by the National Science Foundation, the Ohio Division of Wildlife, Schwab Associate Scholarship grant from The Ohio State University, and an undergraduate research grant from the College of Biological Sciences.

Contact: Amanda D. Rodewald, (614) 247-6099; Rodewald.1@osu.edu
Media Contact: Jeff Grabmeier, (614) 292-8457; Grabmeier.1@osu.edu
Written by Jessica Orwig

Jeff Grabmeier | Newswise Science News
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>