Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Bright Red of Cardinals Means Less in Urban Areas

02.09.2010
Normally, the brilliant red of a male cardinal signals to females that he is a high-quality mate. But that may not be true of cardinals living in urban areas, a new study suggests.

Researchers found that the bright red feather coloration of male northern cardinals (Cardinalis cardinalis) was less related to body condition for birds living in urban forests than it is for those in rural forests. In other words, even cardinals in relatively poor condition may appear bright red in urban areas.

“We found that the relationship between brightness and body condition was stronger in more rural landscapes than it was in urban areas,” said Amanda Rodewald, co-author of the study and professor of wildlife ecology at Ohio State University’s School of Environment and Natural Resources..

“That means urbanization has the potential to disrupt cues that birds have long used to assess quality and choose mates.”

Rodewald conducted the study with Todd Jones, an undergraduate student researcher at the time, and Daniel Shustack, a recent doctoral graduate. Their results appear in the current issue of The Wilson Journal of Ornithology.

The researchers studied 129 male and 145 female cardinals that were captured in 13 forests in central Ohio between 2006 and 2008. Each forest was rated as to the amount of urbanization surrounding it, and the researchers compared feather samples from cardinals at each site.

The feathers were photographed and the photos were analyzed by a software program that measured the hue, saturation and brightness of each feather.

They also measured body mass and size of the cardinals to indicate their body condition, or health. Body condition considers how much a bird weighs after adjusting for its frame size.

The researchers did not find any relation between female body condition and plumage brightness and whether they lived in a more urban or more rural area.

For males, brighter feathers were indicative of birds in better condition in rural areas, but were not as indicative in urban areas.

In cardinals, as in some other birds, feather coloration is related to their diet. Diets high in carotenoids – pigments found in some fruits and other parts of plants – lead to brighter feather colors.

Previous studies indicate that forests within urban areas have nearly three times the amount of fruit and nearby bird feeders than exist in rural areas. Urban forests have many exotic and invasive species, such as Amur honeysuckle and multiflora rose, that provide abundant sources of carotenoid-rich fruits.

The fact that carotenoid-rich fruits are more available in urban areas, to birds over a wide range of conditions, may be one reason that brighter feathers aren’t more indicative of healthy birds in urban areas, Rodewald said. In rural forests, only the highest-quality individuals may have access to carotenoids.

Rodewald is continuing this research by studying how plumage coloration is related to the quality of territories that birds secure and their ability to produce young.

The research was funded by the National Science Foundation, the Ohio Division of Wildlife, Schwab Associate Scholarship grant from The Ohio State University, and an undergraduate research grant from the College of Biological Sciences.

Contact: Amanda D. Rodewald, (614) 247-6099; Rodewald.1@osu.edu
Media Contact: Jeff Grabmeier, (614) 292-8457; Grabmeier.1@osu.edu
Written by Jessica Orwig

Jeff Grabmeier | Newswise Science News
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>