Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough in spinal injury treatment

19.09.2008
Manipulating embryo-derived stem cells before transplanting them may hold the key to optimizing stem cell technologies for repairing spinal cord injuries in humans. Research published in BioMed Central’s open access Journal of Biology, may lead to cell based therapies for victims of paralysis to recover the use of their bodies without the risk of transplant induced pain syndromes.

Dr. Stephen Davies, Associate Professor of Neurosurgery at the University of Colorado Denver School of Medicine, reported that in collaboration with researchers at the University of Rochester, NY his research team has transplanted two types of the major support cells of the brain and spinal cord, cells called astrocytes. These two types of astrocytes, which are both made from the same embryo-derived stem cell-like precursor cell, have remarkably different effects on the spinal repair process.

Using signal molecules known to be involved in the generation of embryonic astrocytes during spinal cord development, the researchers were able to make pure cultures of two different types of astrocytes from the GRP cells.

When Dr. Davies and his team transplanted these two types of astrocytes into the injured spinal cord, they had dramatically different effects. One type of astrocyte called GDAsBMP was remarkably effective at promoting nerve regeneration and recovery of limb motion when transplanted into spinal cord injuries. However, the other type of astrocyte cell generated called GDAsCNTF, not only failed to promote nerve fiber regeneration or functional recovery but also caused neuropathic pain, a severe side effect that was not seen in rats treated with GDAsBMP.

“To our knowledge, this is the first time that two distinct sub-types of astrocyte support cells generated from a common stem cell-like precursor cell have been shown to have robustly different effects when transplanted into the injured adult nervous system,” co-author Dr. Mayer-Proschel said.

Transplantation of the stem cell-like precursor cells without first turning them into astrocytes, also caused pain syndromes and no spinal repair. Davies said “It has long been a concern that therapies that promote growth of nerve fibers in the injured spinal cord would also cause sprouting of pain circuits. However, by using GDAsBMP to repair spinal cord injuries we can have all the gains without the pain, while these other cell types appear to provide the opposite – pain but no gain.” The research teams considered the distinction between the effects of GDAsBMP, GDAsCNTF and GRP cells a “breakthrough” that might change the way stem cell technologies are used to repair spinal cord injuries.

Controlling the development of stem cells immediately before transplanting them into injured spinal cords is essential because doctors cannot rely on the injured tissues of the body to create the right types of cells from “naïve” stem cells. Co-author Mark Noble said “These studies are particularly exciting in addressing two of the most significant challenges to the field of stem cell medicine – defining the optimal cell for tissue repair and identifying means by which inadequately characterized approaches may actually cause harm.’ To that end, the researchers are developing a safe, efficient and cost-effective way to make human GDAsBMP with an eye toward testing this new stem cell technology in humans.

Charlotte Webber | alfa
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>