Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough produces Parkinson's patient-specific stem cells free of harmful reprogramming genes

09.03.2009
FINDINGS: Deploying a method that removes potentially cancer-causing genes, Whitehead Institute researchers have "reprogrammed" human skin cells from Parkinson's disease patients into an embryonic-stem-cell-like state. Whitehead scientists then used these so-called induced pluripotent stem (iPS) cells to create dopamine-producing neurons, the cell type that degenerates in Parkinson's disease patients.

RELEVANCE: This marks first time researchers have generated human iPS cells, successfully removed the potentially problematic reprogramming genes, and seen the cells maintain their embryonic stem-cell-like state. Previous methods to reprogram mature cells into iPS cells inserted cancer-causing genes into the cells' DNA. Because the current method removes the cancer-causing genes, the resulting iPS cells' DNA is virtually identical to the DNA of the original adult cells. These iPS cells can be matured into any cell type, allowing for screens of potential drug therapies and study of patient-specific disease at the cellular level.

Whitehead Institute researchers have developed a novel method to remove potential cancer-causing genes during the reprogramming of skin cells from Parkinson's disease patients into an embryonic-stem-cell-like state. Scientists then used the resulting induced pluripotent stem (iPS) cells to derive dopamine-producing neurons, the cell type that degenerates in Parkinson's disease patients.

This marks the first time researchers have generated human iPS cells that have maintained their embryonic stem-cell-like properties after the removal of reprogramming genes. The findings are published in the March 6 edition of the journal Cell.

"Until this point, it was not completely clear that when you take out the reprogramming genes from human cells, the reprogrammed cells would actually maintain the iPS state and be self-perpetuating," says Frank Soldner, a postdoctoral researcher in Whitehead Member Rudolf Jaenisch's laboratory and co-author of the article.

Since August 2006, researchers have been reprogramming adult cells into iPS cells by using viruses to transfer four genes (Oct4, Sox2, c-Myc and Klf4) into the cells' DNA. Although necessary for reprogramming cells, these genes, the known oncogene c-Myc in particular, also have the potential to cause cancer. In addition, the four genes interact with approximately 3000 other genes in the cell, which may change how the cell functions. Therefore, leaving the genes behind in successfully reprogrammed cells may cause unintended alterations that limit the cells' applicability for therapeutic use, for drug screens or to study disease in cell culture.

In the current method, Whitehead researchers used viruses to transfer the four reprogramming genes and a gene coding for the enzyme Cre into skin cells from Parkinson's disease patients. The reprogramming genes were bracketed by short DNA sequences, called loxP, which are recognized by the enzyme Cre.

After the skin cells were reprogrammed to iPS cells, the researchers introduced the Cre enzyme into the cells, which removed the DNA between the two loxP sites, thereby deleting the reprogramming genes from the cells. The result is a collection of iPS cells with genomes virtually identical to those of the Parkinson's disease patients from whom original skin cells came.

Removing the reprogramming genes is also important because of those genes' effect on an iPS cell's gene expression (a measure of which genes the cell is using and how much it's using those genes). When the researchers compared the gene expressions of human embryonic stem cells to iPS cells with and without the reprogramming factors, iPS cells without the reprogramming genes had a gene expression closer to human embryonic stem cells than to the same iPS cells that still contained the reprogramming genes.

"The reprogramming factors are known to bind to and affect the expression of 3,000 genes in the entire genome, so having artificial expression of those genes will change the cell's overall gene expression," Dirk Hockemeyer, who is also a co-author of the Cell article. "That's why the four reprogramming genes can mess up the system so much. From now on, it will be tough for researchers to leave the reprogramming genes in iPS cells."

Jaenisch says that the process to remove the reprogramming genes is very successful, when compared with earlier experiments. "Other labs have reprogrammed mouse cells and removed the reprogramming genes, but it was incredibly inefficient, and they couldn't get it to work in human cells," he says. "We have done it much more efficiently, in human cells, and made reprogrammed, gene-free cells."

After removing the reprogramming genes, the Jaenisch researchers differentiated the cells from the Parkinson's disease patients into dopamine-producing nerve cells. In Parkinson's disease patients, these cells in the brain die or become impaired, causing such classic Parkinson's symptoms as tremors, slowed movement, and balance problems.

Because the cells reside in the patients' brains, researchers cannot easily access them to investigate how the disease progresses at the cellular level, what kills the cells, or what might prevent cellular damage. Therefore, the ability to create patient-specific iPS cells, derive the dopamine-producing cells, and study those patient-specific cells in the lab could be a great advantage for Parkinson's disease researchers.

Although the initial results are extremely promising, Jaenisch acknowledges that the process is far from over. "The next step is to use these iPS-derived cells as disease models, and that's a high bar, a real challenge. I think a lot of work has to go into that."

Nicole Giese | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Newly designed molecule binds nitrogen

23.02.2018 | Life Sciences

Stagnation in the South Pacific Explains Natural CO2 Fluctuations

23.02.2018 | Earth Sciences

Mat4Rail: EU Research Project on the Railway of the Future

23.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>