Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In breakthrough, nerve connections are regenerated after spinal cord injury

09.08.2010
Researchers from UCI, UCSD and Harvard deleted a cell growth inhibitor called PTEN

Researchers for the first time have induced robust regeneration of nerve connections that control voluntary movement after spinal cord injury, showing the potential for new therapeutic approaches to paralysis and other motor function impairments.

In a study on rodents, the UC Irvine, UC San Diego and Harvard University team achieved this breakthrough by turning back the developmental clock in a molecular pathway critical for the growth of corticospinal tract nerve connections.

They did this by deleting an enzyme called PTEN (a phosphatase and tensin homolog), which controls a molecular pathway called mTOR that is a key regulator of cell growth. PTEN activity is low early during development, allowing cell proliferation. PTEN then turns on when growth is completed, inhibiting mTOR and precluding any ability to regenerate.

Trying to find a way to restore early-developmental-stage cell growth in injured tissue, Zhigang He, a senior neurology researcher at Children's Hospital Boston and Harvard Medical School, first showed in a 2008 study that blocking PTEN in mice enabled the regeneration of connections from the eye to the brain after optic nerve damage.

He then partnered with Oswald Steward of UCI and Binhai Zheng of UCSD to see if the same approach could promote nerve regeneration in injured spinal cord sites. Results of their study appear online in Nature Neuroscience.

"Until now, such robust nerve regeneration has been impossible in the spinal cord," said Steward, anatomy & neurobiology professor and director of the Reeve-Irvine Research Center at UCI. "Paralysis and loss of function from spinal cord injury has been considered untreatable, but our discovery points the way toward a potential therapy to induce regeneration of nerve connections following spinal cord injury in people."

According to Christopher & Dana Reeve Foundation data, about 2 percent of Americans have some form of paralysis resulting from spinal cord injury, which is due primarily to the interruption of connections between the brain and spinal cord.

An injury the size of a grape can lead to complete loss of function below the level of injury. For example, an injury to the neck can cause paralysis of arms and legs, loss of ability to feel below the shoulders, inability to control the bladder and bowel, loss of sexual function, and secondary health risks including susceptibility to urinary tract infections, pressure sores and blood clots due to an inability to move the legs.

"These devastating consequences occur even though the spinal cord below the level of injury is intact," Steward noted. "All these lost functions could be restored if we could find a way to regenerate the connections that were damaged."

He and his colleagues are now studying whether the PTEN-deletion treatment leads to actual restoration of motor function in mice with spinal cord injury. Further research will explore the optimal timeframe and drug-delivery system for the therapy.

Kai Liu, Yi Lu, Andrea Tedeschi, Kevin Kyungsuk Park, Duo Jin, Bin Cai, Bengang Xu and Lauren Connolly of Harvard; Jae Lee of UCSD; and Rafer Willenberg and Ilse Sears-Kraxberger of UCI also contributed to the study, which was supported by the Wings for Life Spinal Cord Research Foundation, the Craig H. Neilsen Foundation, the International Spinal Research Trust, the National Institute of Neurological Disorders & Stroke, and a private contribution to the Reeve-Irvine Research Center.

About the Reeve-Irvine Research Center: The mission of the Reeve-Irvine Research Center is to find new treatments for spinal cord injury through the collaborative research and educational efforts of prominent scientists and clinicians both at UCI and around the world. For more information, visit www.reeve.uci.edu.

About the University of California, Irvine: Founded in 1965, UCI is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UCI is among the most dynamic campuses in the University of California system, with nearly 28,000 undergraduate and graduate students, 1,100 faculty and 9,000 staff. Orange County's largest employer, UCI contributes an annual economic impact of $3.9 billion. For more UCI news, visit www.today.uci.edu.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Contact:
Tom Vasich
949-824-6455
tmvasich@uci.edu
Elizabeth Andrews
617-919-3103
elizabeth.andrews@childrens.harvard.edu
UCI maintains an online directory of faculty available as experts to the media. To access, visit www.today.uci.edu/experts. For UCI breaking news, visit www.zotwire.uci.edu.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>