Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough: Gut bacteria drive growth of stem cells in colon cancer

05.04.2016

Colon cancer is one of the most common forms of cancer in Germany. Prof. Dr. med. Sebastian Zeißig, group leader at the DFG Research Center for Regenerative Therapies Dresden (CRTD) - Cluster of Excellence at the TU Dresden and physician at the Department of Medicine I, University Hospital Carl Gustav Carus Dresden, has now shown a decisive role of gut bacteria in the regulation of intestinal stem cells and the development of colon cancer. This discovery promises new therapies not only for cancer but for promoting regeneration of the intestine, for example after chemotherapy.

The intestinal surface is a rapidly renewing tissue, whose regeneration is driven by stem cells. Damage of these intestinal stem cells, as observed upon chemotherapy, leads to impaired regeneration of the intestine and severe illness.


Prof. Dr. med. Sebastian Zeißig

© CRTD

On the other hand, genetic mutations that further promote the growth of intestinal stem cells are associated with uncontrolled organ regeneration and the development of colon cancer. Tight control of intestinal stem cells is therefore required to allow for regeneration but to prevent cancer.

Sebastian Zeißig’s group has now demonstrated that bacteria within the normal gut microbiota can invade the intestinal tissue and activate an enzyme in stem cells that facilitates stem cell growth and cancer development. This discovery could form the basis of novel therapies for the prevention and treatment of colon cancer.

“In the future, bacteria engineered to block these pathways could potentially be used as probiotics which act in local manner in the intestine to inhibit the growth of colon cancer and to perhaps even prevent its development”, says Sebastian Zeißig.

Since stem cells are also critical for regeneration in the intestine, therapies that target these pathways may further help to design new drugs that reduce side effects associated with chemotherapy, radiotherapy or other causes of intestinal damage.

With his research group at the CRTD, Zeißig has already started to engineer intestinal bacteria with the goal of influencing regeneration and cancer development in the intestine. Zeißig, who is also a practicing physician at the Department of Medicine I, University Hospital Carl Gustav Carus Dresden, adds “With its focus on stem cell biology and a close link to clinical medicine, the CRTD indeed offers a unique environment for physician scientists to develop new treatments for regenerative medicine and cancer therapy.”

Scientific publication:
"Epithelial calcineurin in the control of microbiota-dependent intestinal tumor development" (NMED-A75820A)
DOI 10.1038/nm.4072

Press Contact:
Franziska Clauß
Press Officer
Phone: +49 351 458 82065, e-Mail: franziska.clauss@crt-dresden.de

Weitere Informationen:

http://www.crt-dresden.de

Franziska Clauß | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>