Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brandeis University researchers illuminate key structure in heart cells

05.03.2014

After a decade of debate, scientists have a clear picture of a controversial protein that helps regulate heart contractions

Brandeis University researchers have unlocked a controversial structure in heart cells responsible for regulating heart contractions.

E1 Protein on Cell Surface

This is an E1 protein, on the surface of a mammalian cell, illuminated with a teal fluorescent protein and viewed through a laser mounted total internal reflection microscope.

Credit: Leigh Plant

For years, scientists have debated how many KCNE1 proteins are required to build a potassium ion channel, theorizing anywhere between one and 14. Now, Brandeis University researchers found that these channels are built with two E1s. Understanding the construction of this channel is key to understanding life-threatening heart conditions, such as arrhythmias, and developing drugs to threat those conditions.

This report challenges a previous study — the findings of which are currently being used in million dollar drug development trials — that anywhere between one and four E1s are required per channel. Brandeis researchers hope their new findings may help create more effective models to study heart conditions and their treatment.

Leigh Plant, assistant research professor of biochemistry, along with postdoctoral fellows Dazhi Xiong, Hui Dai and provost and professor of biochemistry Steve Goldstein, published their findings in the Proceedings of the National Academy of Sciences on Monday, March 3.

A single heartbeat is the slow expanding and contracting of the heart muscle. It is controlled, in part, by a series of channels on the surface of heart cells that regulate the movement of different ions into and out of the cells. The potassium ion channel is critical to ending each heart contraction and is made up of the proteins Q1 and E1. Q1s create the pore that the potassium flows through and the E1s control how slowly that pore opens and closes, how many channels are on the cell surface of each cell and how they are regulated by drugs.

Goldstein's team observed E1 in live, mammalian cells at remarkable sensitivity, counting the proteins in individual channels, something that had never been done before in this area of research. Because this mechanism has been so widely debated, Goldstein and his team used three different means to count E1 — including tagging them with different fluorescent colors and using a scorpion toxin to bind to Q1. Each time, the team got the same results.

While there is always room for debate in science, Goldstein and his team said they hope these findings will give researchers a quintessential key to unlocking the intricacies of the heartbeat.

###

This research was funded by a grant from the National Institutes of Health.

Leah Burrows | EurekAlert!
Further information:
http://www.brandeis.edu

Further reports about: Goldstein drugs illuminate potassium proteins remarkable sensitivity structure

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>