Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Brain Tumor Cells Decimated by Mitochondrial "Smart Bomb"


An experimental drug that attacks brain tumor tissue by crippling the cells' energy source called the mitochondria has passed early tests in animal models and human tissue cultures, say Houston Methodist scientists.

As reported on the cover of the April 2015 ChemMedChem (early online), Houston Methodist Kenneth R. Peak Brain & Pituitary Tumor Center Director David S. Baskin, M.D., and Peak Center Head of Research Martyn Sharpe, Ph.D. designed a drug called MP-MUS that destroyed 90 to 95 percent of malignant glioma cells, yet in other experiments did not seem to adversely affect healthy human brain cells (in vitro). This compliments a soon to be published extensive study showing the same drug can treat human brain cancer grown in the brains of mice. Researchers hope to begin testing the drug in human clinical trials in 2016 or 2017

Dr. David Baskin laboratory, Houston Methodist

The new drug MP-MUS (yellow) attacks cancer cell mitochondria by infiltrating both inner and outer membranes (green) after being converted from an inactive, non-toxic form to an active, toxic form by the enzyme MAO-B (purple). Once inside, the drug damages mitochondrial DNA, which cannot be repaired.

"We are very optimistic that we'll get there," said Baskin, also Vice Chair of the Department of Neurosurgery at Houston Methodist Hospital. "Our past work has shown that MP-MUS has very low toxicity until it gets into tumor cells. Once it arrives, it is changed to its active form, doing a lot of damage where we want it to, leaving healthy brain cells alone -- a bit like a 'smart bomb.' To our knowledge, this is the first known example of selective mitochondrial chemotherapy, which we believe represents a powerful new approach to brain cancer.”

Medical options for brain tumor patients are woeful, Baskin said. "It's a horrible diagnosis. Because of where the tumors are located, and because of the way they can infiltrate healthy tissue, surgery is often not helpful long term. The most effective chemotherapy drug available right now, temozolomide, only extends life from 9 to 15 months, and patients' quality of life during that period isn't very good."

For that reason, Baskin said, he and researchers around the world have been looking for new treatment approaches, such as vaccines intended to aid the body's immune system's recognition and removal of tumor cells, gene therapy and, in the present case, targeting tumor cell mitochondria.

Gliomas (a type of brain tumor) develop from brain cells called astrocytes. Gliomas account for as much as 20 to 30 percent of all tumors of the brain and central nervous system.

Mitochondria are often referred to as the "powerhouses" of cells -- including misbehaving cancer cells -- because they help cells create energy. In cancer cells this feature is partially switched off, causing cells to rely on other systems that generate energy. The numerous pill-shaped mitochondria in each cell perform a number of other crucial functions, however, and even cancer cells cannot grow and divide without healthy mitochondria.

As luck would have it, an enzyme called MAO-B is over-expressed in brain tumor cells, which is the target of MP-MUS. This means that healthy cells are only exposed to low levels of MP-MUS and their mitochondria to very low levels of P+-MUS, Baskin says.

On the other hand, in tumor cells the vast majority of the pro-drug is converted into P+-MUS, which essentially traps the drug inside their mitochondria where it attacks the mitochondrial DNA.

"We found that we could achieve profound effects with MP-MUS at very low concentrations, around 75 micromolar," said Baskin, Professor of Neurological Surgery, Weill Cornell Medical College. "By contrast, temozolomide must be used at concentrations two to three times that to be of any use to patients. Our approach is designed to capitalize on what is going inside the cells. Tumor cells have much more MAO-B, and when challenged, make even more MAO-B as a sort of defensive response. We hope that we are one step ahead of the cancer cells, as we are using that very fact to kill them."

The researchers reported MP-MUS's toxicity to healthy cells remained low at concentrations as high as 180 micromolar. This information will be useful to the researchers as they consider safety and efficacy trials in human patients.

Houston Methodist and Baskin and Sharpe entered into an agreement with Virtici, LLC to develop MP-MUS and are currently preparing toxicology studies which are required prior to clinical trials.

Also contributing to the ChemMedChem paper Junyan Han, Ph.D., and Alexandra Baskin, a student at St. Johns School. Funding the project were the Donna and Kenneth R. Peak Foundation, the Kenneth R. Peak Brain and Pituitary Center at Houston Methodist Hospital, the Taub Foundation, the Blanche Green Estate Fund of the Pauline Sterne Wolff Memorial Foundation, the Verelan Foundation, the Houston Methodist Hospital Foundation, the Dunn Foundation, and the American Brain Tumor Association.

ChemMedChem is a sister journal of Angewandte Chemie and is published by Wiley. The journal's impact factor was rated 3.0 in 2013 by the Institute for Scientific Information.

To speak with Dr. Baskin, please contact Gale Smith, Houston Methodist, at 832-667-5843 or

While human clinical trials have not yet begun for MP-MUS, Houston Methodist Neurological Institute doctors are overseeing participation in a number of clinical trials related to gliomas and glioblastomas. The Kenneth R. Peak Brain and Pitutary Tumor Center provides highly personalized and specialized care for all patients with Brain tumors.

For more information, please visit , and

Contact Information
Gale Smith
Public Relations Manager
Phone: 832-667-5843
Mobile: 281-627-0439

Gale Smith | newswise

Further reports about: BRAIN Cells Tumor brain cells brain tumor cancer cells concentrations mitochondria tumor cells

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>