Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain research by PolyU and CAS published in Nature journals

24.09.2009
A neuroscience research jointly conducted by The Hong Kong Polytechnic University and the Chinese Academy of Science has led to the discovery of the novelty detection mechanism in the gateway to the cerebral cortex.

A neuroscience research jointly conducted by The Hong Kong Polytechnic University (PolyU) and the Chinese Academy of Science (CAS) has led to the discovery of a previously unknown feature of the human brain - the novelty detection mechanism in the gateway to the cerebral cortex. The finding was reported in the latest issue (September 2009) of Nature Neuroscience and highlighted by Nature (China), both being publications of the Nature Publishing Group.

This sophisticated research was being undertaken at the University's Applied Neuroscience Laboratory by a team led by Prof. He Jufang of PolyU Department of Rehabilitation Sciences and his student and Prof. He Shigang in CAS Institute of Biophysics. The study found that the thalamic reticular neurons which reside in the position as the guardian of the gateway to the cerebral cortex, responded to novel stimulus a lot better than to the repeated stimulus.

The researchers presented a two-tone melody repeatedly to rats during the experiment, pitching the sound mostly at a standard frequency and occasionally at a deviant frequency. This oddball procedure showed that the auditory sector of thalamic reticular neurons - which are inhibitory and control the ascending sensory information in the thalamus - has a deviance preference. The structure has been hypothesized to performing a great role in sensory attention.

The present finding advanced our understanding of its potential roles and the mechanism in attention shift, which could happen across sensory modalities. Malfunction of these neurons might cause attention deficit disorders and tinnitus, the perception of sound within the human ear in the absence of corresponding external sound.

Earlier, the Applied Neuroscience Laboratory has collaborated with Prof. Poo Mu-ming and Zhang Xiaohui of CAS Institute of Neuroscience and made another major finding in the auditory thalamus which was published in The Journal of Neuroscience (May 2009). In that study, they found that the auditory thalamic neurons can respond to sound of low frequency or slow oscillations at frequencies of less than one Hertz. More importantly, the auditory thalamic neurons can pick up and retain the sound beat for a while even after the sound has stopped. This interesting finding has shed new light on the mechanism of attention and understanding the sensitivity of our brains to certain sounds.

In carrying out this study, researchers presented repetitive sound stimuli and analyzed the response of their auditory neurons with sophisticated measuring tools. The study showed that the sensory neurons remained active after termination of the sound stimuli, and even a weak sound could trigger the sustaining response for at least 10 seconds. The study also found that the thalamic neurons responded to rhythmic sound stimuli during slow wave sleep, as confirmed by extracellular recordings. Such effects may help retain the information of stimulus interval in order of seconds.

The principal investigator Prof. He Jufang is one of the leading neuroscientists in the hearing research and thalamocortical system, especially in the corticofugal modulation. With research interest focusing on systems neuroscience, he combines electrophysiological, anatomical and engineering approaches to investigate the fundamental questions of hearing, sleep, learning and memory. Prof. He has recently been named a Croucher Senior Research Fellow 2009 in recognition of distinguished research accomplishment.

The Applied Neuroscience Laboratory was set up by PolyU in 2006 to support research work and investigate fundamental questions in neuroscience. A part of this laboratory in the line of visuo-auditory integration was entitled in 2008 as a Joint-Laboratory between the Chinese Academy of Sciences and PolyU.

Evelyn Chan | Research asia research news
Further information:
http://www.polyu.edu.hk/
http://www.researchsea.com

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>