Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Brain research by PolyU and CAS published in Nature journals

A neuroscience research jointly conducted by The Hong Kong Polytechnic University and the Chinese Academy of Science has led to the discovery of the novelty detection mechanism in the gateway to the cerebral cortex.

A neuroscience research jointly conducted by The Hong Kong Polytechnic University (PolyU) and the Chinese Academy of Science (CAS) has led to the discovery of a previously unknown feature of the human brain - the novelty detection mechanism in the gateway to the cerebral cortex. The finding was reported in the latest issue (September 2009) of Nature Neuroscience and highlighted by Nature (China), both being publications of the Nature Publishing Group.

This sophisticated research was being undertaken at the University's Applied Neuroscience Laboratory by a team led by Prof. He Jufang of PolyU Department of Rehabilitation Sciences and his student and Prof. He Shigang in CAS Institute of Biophysics. The study found that the thalamic reticular neurons which reside in the position as the guardian of the gateway to the cerebral cortex, responded to novel stimulus a lot better than to the repeated stimulus.

The researchers presented a two-tone melody repeatedly to rats during the experiment, pitching the sound mostly at a standard frequency and occasionally at a deviant frequency. This oddball procedure showed that the auditory sector of thalamic reticular neurons - which are inhibitory and control the ascending sensory information in the thalamus - has a deviance preference. The structure has been hypothesized to performing a great role in sensory attention.

The present finding advanced our understanding of its potential roles and the mechanism in attention shift, which could happen across sensory modalities. Malfunction of these neurons might cause attention deficit disorders and tinnitus, the perception of sound within the human ear in the absence of corresponding external sound.

Earlier, the Applied Neuroscience Laboratory has collaborated with Prof. Poo Mu-ming and Zhang Xiaohui of CAS Institute of Neuroscience and made another major finding in the auditory thalamus which was published in The Journal of Neuroscience (May 2009). In that study, they found that the auditory thalamic neurons can respond to sound of low frequency or slow oscillations at frequencies of less than one Hertz. More importantly, the auditory thalamic neurons can pick up and retain the sound beat for a while even after the sound has stopped. This interesting finding has shed new light on the mechanism of attention and understanding the sensitivity of our brains to certain sounds.

In carrying out this study, researchers presented repetitive sound stimuli and analyzed the response of their auditory neurons with sophisticated measuring tools. The study showed that the sensory neurons remained active after termination of the sound stimuli, and even a weak sound could trigger the sustaining response for at least 10 seconds. The study also found that the thalamic neurons responded to rhythmic sound stimuli during slow wave sleep, as confirmed by extracellular recordings. Such effects may help retain the information of stimulus interval in order of seconds.

The principal investigator Prof. He Jufang is one of the leading neuroscientists in the hearing research and thalamocortical system, especially in the corticofugal modulation. With research interest focusing on systems neuroscience, he combines electrophysiological, anatomical and engineering approaches to investigate the fundamental questions of hearing, sleep, learning and memory. Prof. He has recently been named a Croucher Senior Research Fellow 2009 in recognition of distinguished research accomplishment.

The Applied Neuroscience Laboratory was set up by PolyU in 2006 to support research work and investigate fundamental questions in neuroscience. A part of this laboratory in the line of visuo-auditory integration was entitled in 2008 as a Joint-Laboratory between the Chinese Academy of Sciences and PolyU.

Evelyn Chan | Research asia research news
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>