Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain doesn’t need vision at all in order to ‘read’ material

22.02.2011
The portion of the brain responsible for visual reading doesn't require vision at all, according to a new study by researchers from the Hebrew University of Jerusalem and France.

Brain imaging studies of blind people as they read words in Braille show activity in precisely the same part of the brain that lights up when sighted readers read. The findings challenge the textbook notion that the brain is divided up into regions that are specialized for processing information coming in via one sense or another, the researchers say.

"The brain is not a sensory machine, although it often looks like one; it is a task machine," said Dr. Amir Amedi of the Hebrew University of Jerusalem, head of the team of researchers whose work on the topic is reported in the latest issue of Current Biology.

"A particular area fulfills a unique function, in this case reading, regardless of sensory input modality," he said. Amedi is affiliated with the Institute for Medical Research Israel-Canada and the Edmond and Lily Safra Center for Brain Sciences at the Hebrew University.

Unlike other tasks that the brain performs, reading is a recent invention, about 5,400 years old. Braille has been in use for less than 200 years. "That's not enough time for evolution to have shaped a brain-module dedicated to reading," Amedi explained.

Nevertheless, brain scans have shown that a very specific part of the brain, known as the Visual Word Form Area or VWFA for short (first discovered in sighted people by Dr. Laurent Cohen of Paris, a co-author of the current article), has been co-opted for this purpose. But no one knew what might happen in the brains of blind people who learn to read despite the fact that they've had no visual experience at all.

In the new study, Amedi's team, which included his doctoral student Lior Reich, used functional magnetic resonance imaging (fMRI) to measure the neural activity in eight people who had been blind since birth while they read Braille words or nonsense Braille. If the brain were organized around processing sensory information, one might expect that Braille reading would depend on regions dedicated to processing tactile information, Amedi explained. If instead the brain is task-oriented, you'd expect to find the peak of activity across the entire brain in the VWFA, right where it occurs in sighted readers, and that is exactly what the researchers saw.

Further comparison of brain activity in the blind and sighted readers showed that the patterns in the VWFA were indistinguishable between the two.

"The main functional properties of the VWFA as identified in sighted are present as well in the blind, and are thus independent of the sensory-modality of reading, and even more surprisingly do not require any visual experience," the researchers wrote. "To the best of our judgment, this provides the strongest support so far for the metamodal theory of brain function," which suggests that brain regions are defined by the computations they perform. "Hence, the VWFA should also be referred to as the tangible word-form area, or more generally as the (metamodal) word-form area."

The researchers suggest that the VWFA is a multisensory integration area that binds simple features into more elaborate shape descriptions, making it ideal for the relatively new task of reading.

"Its specific anatomical location and strong connectivity to language areas enable it to bridge a high-level perceptual word representation and language-related components of reading," they said. "It is therefore the most suitable region to be taken over during reading acquisition, even when reading is acquired via touch without prior visual experience."

Amedi said he and his research associates plan to examine brain activity as people learn to read Braille for the first time in order to find out how rapidly this takeover happens. “What we want to find out is: how does the brain change to process information in words and is it instantaneous?"

For further information: Jerry Barach, Dept. of Media Relations, the Hebrew University, Tel: 02-588-2904.

Orit Sulitzeanu, Hebrew University spokesperson, Tel: 054-8820016.

Jerry Barach | Hebrew University of Jerusalem
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>