Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain doesn’t need vision at all in order to ‘read’ material

22.02.2011
The portion of the brain responsible for visual reading doesn't require vision at all, according to a new study by researchers from the Hebrew University of Jerusalem and France.

Brain imaging studies of blind people as they read words in Braille show activity in precisely the same part of the brain that lights up when sighted readers read. The findings challenge the textbook notion that the brain is divided up into regions that are specialized for processing information coming in via one sense or another, the researchers say.

"The brain is not a sensory machine, although it often looks like one; it is a task machine," said Dr. Amir Amedi of the Hebrew University of Jerusalem, head of the team of researchers whose work on the topic is reported in the latest issue of Current Biology.

"A particular area fulfills a unique function, in this case reading, regardless of sensory input modality," he said. Amedi is affiliated with the Institute for Medical Research Israel-Canada and the Edmond and Lily Safra Center for Brain Sciences at the Hebrew University.

Unlike other tasks that the brain performs, reading is a recent invention, about 5,400 years old. Braille has been in use for less than 200 years. "That's not enough time for evolution to have shaped a brain-module dedicated to reading," Amedi explained.

Nevertheless, brain scans have shown that a very specific part of the brain, known as the Visual Word Form Area or VWFA for short (first discovered in sighted people by Dr. Laurent Cohen of Paris, a co-author of the current article), has been co-opted for this purpose. But no one knew what might happen in the brains of blind people who learn to read despite the fact that they've had no visual experience at all.

In the new study, Amedi's team, which included his doctoral student Lior Reich, used functional magnetic resonance imaging (fMRI) to measure the neural activity in eight people who had been blind since birth while they read Braille words or nonsense Braille. If the brain were organized around processing sensory information, one might expect that Braille reading would depend on regions dedicated to processing tactile information, Amedi explained. If instead the brain is task-oriented, you'd expect to find the peak of activity across the entire brain in the VWFA, right where it occurs in sighted readers, and that is exactly what the researchers saw.

Further comparison of brain activity in the blind and sighted readers showed that the patterns in the VWFA were indistinguishable between the two.

"The main functional properties of the VWFA as identified in sighted are present as well in the blind, and are thus independent of the sensory-modality of reading, and even more surprisingly do not require any visual experience," the researchers wrote. "To the best of our judgment, this provides the strongest support so far for the metamodal theory of brain function," which suggests that brain regions are defined by the computations they perform. "Hence, the VWFA should also be referred to as the tangible word-form area, or more generally as the (metamodal) word-form area."

The researchers suggest that the VWFA is a multisensory integration area that binds simple features into more elaborate shape descriptions, making it ideal for the relatively new task of reading.

"Its specific anatomical location and strong connectivity to language areas enable it to bridge a high-level perceptual word representation and language-related components of reading," they said. "It is therefore the most suitable region to be taken over during reading acquisition, even when reading is acquired via touch without prior visual experience."

Amedi said he and his research associates plan to examine brain activity as people learn to read Braille for the first time in order to find out how rapidly this takeover happens. “What we want to find out is: how does the brain change to process information in words and is it instantaneous?"

For further information: Jerry Barach, Dept. of Media Relations, the Hebrew University, Tel: 02-588-2904.

Orit Sulitzeanu, Hebrew University spokesperson, Tel: 054-8820016.

Jerry Barach | Hebrew University of Jerusalem
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>