Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Brain development: Fate of brain progenitor cells hinges on getting the timing right


Just like musicians in a philharmonic orchestra look to the conductor for their cues, stem cells in charge of generating the dazzling number and variety of cells that build the developing brain rely on molecular signals to get the timing right. Now, scientists at the Leibniz Institute for Age Research add a new and unexpected mechanism to the list of cues that ensure that neural stem cells keep the beat. Their findings, published in the May 1, 2014, edition of the journal Cell Stem Cell, lay the groundwork for new approaches to stimulate the self-renewal and regenerative capacity of adult brain stem cells to treat neurodegeneration and other brain injuries.

During embryonic brain development, neural stem cells pass through a series of tightly regulated stages: from omnipotent stem cell to specialized progenitor capable of producing only certain types of neurons or support cells. If the timing of any of these transitions is just slightly off, it will result in substantial changes in the total number of neurons and ultimately overall brain size.

The number of proliferating neural progenitors (shown in red) is significantly decreased in the brains of Trrap-deficient mice (BOTTOM) compared to the brains of control mice (TOP).

Courtesy of Dr. Alicia Tapias, Leibniz-Institute for Age Research – Fritz Lipmann Institute (FLI), Jena, Germany

“The correct timing of fate decisions by neuronal stem cells is fundamental for building the necessary fine brain architecture,” explains Zhao-Qi Wang, Ph.D., the study’s senior author.

Wang and this team discovered that Trrap, a protein better known for its general role in facilitating the gene expression machinery’s access to DNA, prevents actively dividing neural progenitors from dawdling. Without Trrap, dividing cells slow down—loosing their ability for self-renewal and differentiating into neurons prematurely.

“By maintaining the balance between self-renewal and differentiation of neural progenitors, Trrap ensures the availability of enough neuron-producing progenitors to build a healthy brain,” says Wang.

When genes are turned on to serve as templates for proteins, the tightly wound DNA must unfurl just enough to allow the machinery that reads the encoded genetic information to slip in. Their access is mainly regulated through enzymes that add small chemical flags to the histone spools that keep the DNA inside a cell’s nucleus neatly organized. One of the best-studied modifications is the addition of acetyl groups, which is catalyzed by an enzyme known as histone acetyltransferase or HAT, for short. Trrap is its well-known and indispensible helpmate.

These histone modifications—often referred to as epigenetic changes—play an important role in creating distinct patterns of gene expression essential for self-renewal and differentiation of stem cells but the details are still somewhat unclear. “We still know very little about the specific molecular mechanisms that link epigenetic patterns to the fate of stem cells,” explains postdoctoral researcher and lead author Alicia Tapias, Ph.D.

To learn more, she generated mice that lacked Trrap only in the central nervous system. A first exam of the newborn mice revealed severe developmental defects in the brain. Their brains were about 40 percent smaller, with fewer dividing cells and increased cell death in the cortex—the largest brain structure and seat of higher cognitive functions.

When she followed the fate of neuronal progenitors during embryonic development, it quickly became clear that a highly proliferative subpopulation of neural progenitors known as apical progenitors, prematurely differentiated into basal progenitors, which are capable of generating neurons but, at least in mice, are unable to proliferate.

A genome-wide analysis of gene expression of Trrap-deficient cells brought the research team a step closer to pinpointing the reasons behind the apical progenitors’ change of fate: Deleting Trrap specifically lowered the expression of cell cycle genes, most prominently those governed by E2F, a family of well known cell cycle regulators.

“When we measured cell cycle length in apical progenitors lacking Trrap it was twice as long as in normal control cells, while cycle length in basic progenitors was only slightly delayed,” says Tapias. Overexpression of cell cycle activators Cyclin A2 and Cyclin B1 in Trrap-deficient neural progenitors brought them back up to speed and prevented those cells from differentiating prematurely.

“Our experiments highlight that HAT regulates a specific group of cell cycle genes,” explains Wang and adds that, “this information may shed light on understanding of the epigenetic modulation in neurological behavior and cell fate of adult stem cells in our brains.”

+++ NOT FOR PUBLIC RELEASE BEFORE May 1, 2014 at 12 p.m. EST +++

Tapias A, Zhou ZW, Shi Y, Chong Z, Wang P, Groth M, Platzer M, Huttner W, Herceg Z, Yang YG, Wang ZQ. Trrap-dependent histone acetylation specifically regulates cell cycle gene transcription to control neural progenitor fate decisions. Cell Stem Cell (2014). Doi:;

Gina Kirchweger
Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI)
Beutenbergstraße 11, 07745 Jena
Phone: +49 (0) 3641 656373
Cell: +49 (0) 151 58229052

About the FLI:
The Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI) is the first German research organization dedicated to biomedical aging research since 2004. More than 330 members from over 30 nations explore the molecular mechanisms underlying aging processes and age-associated diseases. For more information, please visit:

About the Leibniz Association
The Leibniz Association connects 89 independent research institutions that range in focus from the natural, engineering and environmental sciences via economics, spatial and social sciences to the humanities. Leibniz institutes address issues of social, economic and ecological relevance. They conduct knowledge-driven and applied basic research, maintain scientific infrastructure and provide research-based services.
The Leibniz Association identifies focus areas for knowledge transfer to policy-makers, academia, business and the public. Leibniz institutions collaborate intensively with universities – in the form of “WissenschaftsCampi” (thematic partnerships between university and non-university research institutes), for example – as well as with industry and other partners at home and abroad. They are subject to an independent evaluation procedure that is unparalleled in its transparency. Due to the importance of the institutions for the country as a whole, they are funded jointly by the Federation and the Länder, employing some 17,200 individuals, including 8,200 researchers. The entire budget of all the institutes is approximately 1.5 billion EUR. For more information, please visit

Weitere Informationen: - Homepage Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI)

Dr. Kerstin Wagner | idw - Informationsdienst Wissenschaft

Further reports about: Brain Cell DNA FLI Leibniz-Institut epigenetic fate genes neurons progenitor self-renewal

More articles from Life Sciences:

nachricht Two decades of training students and experts in tracking infectious disease
27.11.2015 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Increased carbon dioxide enhances plankton growth, opposite of what was expected
27.11.2015 | Bigelow Laboratory for Ocean Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>