Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain's map of space falls flat when it comes to altitude

08.08.2011
Animal's brains are only roughly aware of how high-up they are in space, meaning that in terms of altitude the brain's 'map' of space is surprisingly flat, according to new research.

In a study published online today in Nature Neuroscience, scientists studied cells in or near a part of the brain called the hippocampus, which forms the brain's map of space, to see whether they were activated when rats climbed upwards.

The study, supported by the Wellcome Trust, looked at two types of cells known to be involved in the brain's representation of space: grid cells, which measure distance, and place cells, which indicate location. Scientists found that only place cells were sensitive to the animal moving upwards in altitude, and even then only weakly so.

Professor Kate Jeffery, lead author from UCL Psychology and Language Sciences, said: "The implication is that our internal sense of space is actually rather flat – we are very sensitive to where we are in horizontal space but only vaguely aware of how high we are.

"This finding is surprising and it has implications for situations in which people have to move freely in all three dimensions – divers, pilots and astronauts for example. It also raises the question – if our map of space is flat, then how do we navigate through complex environments so effectively?"

How the hippocampus makes its map of space is fairly well understood for flat environments, but the world is of course not flat – it has a richly varied topography, and a useful map therefore needs to work in all three dimensions. However, adding a third dimension to the two horizontal ones makes things very much more complicated for a map, and it is not clear how – or even if – the brain can encode this.

To begin to answer this question scientists looked at neurons known as grid cells, which become active periodically and at very regular distances as animals walk around, forming a grid-like structure of activity hot-spots. Previous work has found that grid cells are largely concerned with marking out distances.

In the study, rats walked not just on flat ground but also on pegs on a climbing wall, or else on a spiral staircase, so that the rats moved not only horizontally but also vertically. Interestingly, the grid cells still kept track of horizontal distance but did not measure out vertical distances. It seems as if grid cells do not "know" how high they are.

In the second part of the study scientists looked at another type of neurons known as place cells. Place cells, found in the hippocampus itself, produce single activity hotspots in the environment and seem to function to encode specific places. These neurons were only weakly sensitive to height too – but they did show some responsiveness, suggesting they received information about height from some other, possibly non-specific, source.

Professor Jeffery said: "It looks like the brain's knowledge of height in space is not as detailed as its information about horizontal distance, which is very specific. It's perhaps akin to knowing that you are "very high" versus "a little bit high" rather than knowing exact height."

Notes for Editors

1. For more information or to interview Professor Kate Jeffery, please contact Clare Ryan in the UCL Media Relations Office on tel: +44 (0)20 3108 3846, mobile: +44 07747 565 056, out of hours +44 (0)7917 271 364, e-mail: clare.ryan@ucl.ac.uk.

2. 'Anisotropic encoding of three-dimensional space by place cells and grid cells' is published online in the Nature Neuroscience today. Journalists can obtain copies of the paper by contacting UCL Media Relations.

About UCL (University College London)

Founded in 1826, UCL was the first English university established after Oxford and Cambridge, the first to admit students regardless of race, class, religion or gender, and the first to provide systematic teaching of law, architecture and medicine. UCL is among the world's top universities, as reflected by performance in a range of international rankings and tables. Alumni include Marie Stopes, Jonathan Dimbleby, Lord Woolf, Alexander Graham Bell, and members of the band Coldplay. UCL currently has over 13,000 undergraduate and 9,000 postgraduate students. Its annual income is over £700 million. www.ucl.ac.uk

About the Wellcome Trust

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. It supports the brightest minds in biomedical research and the medical humanities. The Trust's breadth of support includes public engagement, education and the application of research to improve health. It is independent of both political and commercial interests. www.wellcome.ac.uk

Clare Ryan | EurekAlert!
Further information:
http://www.ucl.ac.uk

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>