Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Botanists in the rainforest

10.04.2013
Chimpanzees use botanical skills to discover fruit

Fruit-eating animals are known to use their spatial memory to relocate fruit, yet, it is unclear how they manage to find fruit in the first place.


Chimpanzees gazing up tree crowns in their search for fruit. © Ammie Kalan

Researchers of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, have now investigated which strategies chimpanzees in the Taï National Park in Côte d’Ivoire, West Africa, use in order to find fruit in the rain forest. The result: Chimpanzees know that trees of certain species produce fruit simultaneously and use this botanical knowledge during their daily search for fruit.

To investigate if chimpanzees know that if a tree is carrying fruit, then other trees of the same species are likely to carry fruit as well, the researchers conducted observations of their inspections, i.e. the visual checking of fruit availability in tree crowns. They focused their analyses on recordings in which they saw chimpanzees inspect empty trees, when they made “mistakes”.

By analysing these “mistakes”, the researchers were able to exclude that sensory cues of fruit had triggered the inspection and were the first to learn that chimpanzees had expectations of finding fruit days before feeding on it. They, in addition, significantly increased their expectations of finding fruit after tasting the first fruit in season. “They did not simply develop a ‘taste’ for specific fruit on which they had fed frequently”, says Karline Janmaat. “Instead, inspection probability was predicted by a particular botanical feature - the level of synchrony in fruit production of the species of encountered trees.”

The researchers conclude that chimpanzees know that trees of certain species produce fruit simultaneously and use this information during their daily search for fruit. They base their expectations of finding fruit on a combination of botanical knowledge founded on the success rates of fruit discovery and an ability to categorize fruits into distinct species. “Our results provide new insights into the variety of food-finding strategies employed by our close relatives, the chimpanzees, and may well elucidate the evolutionary origins of categorization abilities and abstract thinking in humans”, says Christophe Boesch, director of the Max Planck Institute for Evolutionary Anthropology’s Department of Primatology.

Contact

Karline R. L. Janmaat,
Max Planck Institute for Evolutionary Anthropology, Leipzig
Phone: +49 341 3550-227
Email: karline_janmaat@­eva.mpg.de
Sandra Jacob,
Press and Public Relations
Max Planck Institute for Evolutionary Anthropology, Leipzig
Phone: +49 341 3550-122
Fax: +49 341 3550-119
Email: jacob@­eva.mpg.de
Original publication
Karline R. L. Janmaat, Simone D. Ban & Christophe Boesch
Taï Chimpanzees use Botanical Skills to Discover Fruit: What we can Learn from their Mistakes

Animal Cognition, 10 April 2013

Karline R. L. Janmaat | Max-Planck-Institute
Further information:
http://www.mpg.de/7089161/chimpanzees-botanical-skills

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>