Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Boron-Oxygen Triple Bonds stabilized for the first time ever

16.04.2010
World first: chemists from the University of Würzburg have, for the first time ever, succeeded in creating a stable triple bond between the elements boron and oxygen. This success is reported in the leading journal "Science".

Why is this renowned scientific magazine so enthusiastic about the work of the Würzburg chemists? This is because stable triple bonds have already been realized for almost all chemical elements in the world that theoretically allow a connection of this nature to be established between them - with the exception of boron and oxygen.

Admittedly, triple bonds between boron and oxygen had already been created in the laboratory, but until now this had only been achieved under extreme conditions: the temperatures had to be well below freezing point for this to happen and both elements have to be present as gases - and in the end the triple bond had no enduring stability.

Triple bond stable at room temperature

It is a very different story for Würzburg's chemistry professor Holger Braunschweig and his colleagues Achim Schneider and Dr. Krzysztof Radacki. They have produced, purified, and characterized a stable boron-oxygen triple bond at room temperature in commonly used solvents.

In its purest form, their product exists as a colorless powder. It can withstand temperatures of up to 100 degrees Celsius for many hours. It is not affected by either daylight or UV radiation. Holger Braunschweig concludes: "For the first time ever, science has at its disposal a stable molecule in which a triple bond has been realized between oxygen and boron."

Exciting prospect for basic research

What use will this have? There are no foreseeable applications for the molecule in everyday life as yet. But this newly created boron-oxygen triple bond is an exciting prospect for basic research.

Reactivity studies have already been conducted on the new molecule at Würzburg's Institute of Inorganic Chemistry. The researchers have joined other elements directly to the triple bond and also separated them from it further. How can the molecule be modified? What can be added to it? These questions will also set the agenda for the work that the scientists wish to pursue next.

Holger Braunschweig: recognized boron expert

Holger Braunschweig is a recognized expert in the chemistry of the element boron. His work in this area has recently been acknowledged by the German Research Foundation (DFG): in 2009, he was awarded the Leibniz Prize, which comes with 2.5 million euros in funding and has the reputation of being a kind of "German Nobel Prize".

Boron - a unique element

What is so special about boron? For chemists, this element represents a challenge: it is electron deficient and in a sense craves these particles. It can only satisfy this craving by forming compounds with other elements. "The compounds that boron creates are highly unusual," explains the professor. A leading textbook on inorganic chemistry even devotes a full chapter to this unique element - this alone is indicative of its special status.

Oxoboryl Complexes: Boron-Oxygen Triple Bonds Stabilized in the Coordination Sphere of Platinum, Holger Braunschweig, Krzysztof Radacki, and Achim Schneider, Science 16 April 2010 328: 345-347, DOI: 10.1126/science.1186028

Contact

Prof. Dr. Holger Braunschweig, Institute of Inorganic Chemistry, University of Würzburg, phone +49 (0)931 31-85260, h.braunschweig@uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

Further reports about: Boron-Oxygen CHEMISTRY Krzysztof Nobel Prize inorganic room temperature

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>