Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Border control: study shows how proteins permit entry to a cell

17.10.2008
The means by which proteins provide a 'border control' service, allowing cells to take up chemicals and substances from their surroundings, whilst keeping others out, is revealed in unprecedented molecular detail for the first time today (16 October) in Science Express.

The scientists behind the new study have visualised the structure of a protein called Microbacterium hydantoin permease, or 'Mhp1', which lives in the oily membrane that surrounds bacteria cells. It belongs to a group of proteins known as 'transporters' which help cells take up certain substances from the environment around them.

This is the first time scientists have been able to show how a transporter protein opens and closes to allow molecules across the membrane and into the cell, by accurate analysis of its molecular structure in different states.

Professor So Iwata from Imperial College London's Division of Molecular Biosciences in the Department of Life Sciences, one of the authors of the new study, explains that solving the structure of the Mhp1 bacterial transporter protein is very important because hundreds of similar transporters are found in the membranes of human cells:

"Transporter proteins play an important role in the human body - they are responsible for letting different substances, including salts, sugars and amino acids, into our cells and are targets for a large number of drugs. Understanding the details of how this transport mechanism works may help researchers to design new, more effective, drugs in the future," he said.

The group's research into this protein began in 2000 with a joint project with the Ajinomoto Company from Japan. This company work with a bacterium called Microbacterium liquefaciens which has the Mhp1 protein in its cell membranes. The project revealed that Mhp1 helps the uptake of amino acid-like molecules called hydantoins across the otherwise impermeable cell membrane.

Professor Peter Henderson from the University of Leeds, co-author of the study, said: "The major problem was to produce enough protein for the structural studies. We developed methods for the amplified expression of the Mhp1 protein in a genetically-engineered host organism, Escherichia coli, and procedures for the subsequent efficient purification of the protein from the cell membranes. We could then maintain a 'pipeline' to supply an exceptional amount of the membranes containing the excess Mhp1 protein to our colleagues at Imperial".

Professor Iwata and his colleagues analysed the structure of Mhp1 using the facilities at the Membrane Protein Laboratory (MPL), which is an Imperial College outstation at the Diamond Light Source national synchrotron facility in Oxfordshire. They used the MPL, which is a dedicated facility for membrane protein structural studies, to build an accurate picture of the Mhp1 protein binding to hydantoin.

The researchers analysed the structure of Mhp1 before and after it had taken in a hydantoin molecule from outside the cell, and also used the structure of a related transporter, vSGLT, for insight into the latter stages of the take-up process. These three structures revealed new molecular-level detail of how Mhp1 transports a hydantoin molecule across the cell membrane.

The researchers saw that the Mhp1 protein opens up on its outer-facing side, allowing the hydantoin molecule to move inside. Once the hydantoin is bound, the 'door' to the outside world closes behind it, ensuring that no other substances have been let in. Then the gate on the inward-facing side opens to release the hydantoin into the cell.

Professor Iwata comments on the significance of the discovery, saying: "Our research has revealed the detailed molecular function of an important membrane protein. We now know how the protein facilitates the movement hydantoin across the cell membrane without letting any other substances through at the same time. This mechanism is likely to be shared by many cell membrane proteins, including those in the human body, so this is an important step forward in our understanding of the fundamental processes which occur in our cells."

Professor Iwata leads an international team of scientists at the Membrane Protein Laboratory at the Diamond Light Source. The MPL is a joint venture between Imperial College London and Diamond Light Source, with funding from the Wellcome Trust and the Japan Science and Technology Agency.

Professor Henderson is Scientific Director of the EU-funded European Membrane Protein consortium, 'EMeP', which promotes collaborative research on membrane proteins between 18 European Institutions.

The Science Express research out today was carried out by researchers from Imperial College and the University of Leeds, in collaboration with scientists from Japan and Iran. The work was funded in the UK by the BBSRC, the Japan Science and Technology Agency, the EU, the Wellcome Trust and Ajinomoto Co.

Danielle Reeves | alfa
Further information:
http://www.imperial.ac.uk

Further reports about: Cell Iwata Membrane Mhp1 Microbacterium Protein cell membrane human body hydantoin revealed substances

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>