Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone-eating worms 30 million years old

21.04.2010
Scientists at University of Kiel, Germany, find traces of Osedax in fossil whale bones

An international team of scientists led by the paleontologist Steffen Kiel at the University of Kiel, Germany, found the first fossil boreholes of the worm Osedax that consumes whale bones on the deep-sea floor. They conclude that "boneworms" are at least 30 Million years old. This result was published in the current issue of the scientific journal Proceedings of the National Academy of Sciences of the USA (PNAS, April 19, 2010).

Six years ago Osedax was first described based on specimens living on a whale carcass in 2891 m depth off California. Since then paleontologists have been searching for fossil evidence to pin down its geologic age. Now researchers at the Institute of Geosciences at the Christian-Albrechts-University at Kiel, Germany, found 30 Million year old whale bones with holes and excavations matching those of living Osedax in size and shape. The evidence of the boreholes and cavities made by the living worms was provided by Greg Rouse (Scripps Institution of Oceanography), one of the original discoverers of Osedax.

To produce accurate images of the fossil boreholes, the bones were CT-scanned by the scientists. The fossil bones belong to ancestors of our modern baleen whales and their age was determined using so-called co-occurring index fossils. "The age of our fossils coincides with the time when whales began to inhabit the open ocean" explains Steffen Kiel, who has been working on the evolution and fossil history of deep-sea ecosystems for many years. Only from the open ocean dead whales could sink to the deep-sea floor where they served as food for the boneworms. "Food is extremely rare on the vast deep-sea floor and the concurrent appearance of these whales and Osedax shows that even hard whale bones were quickly utilized as food source", Steffen Kiel explains the relevance of their discovery.

The ancient bones were found by the American fossil collector Jim Goedert. He has been collecting fossil along the American Pacific coast for more than 30 years and is well known in the scientific community. Steffen Kiel says: "I got to know Jim when I was a PhD student, when he visited Hamburg University. We kept in touch ever since." By now, Steffen Kiel has done several field trips with Jim Goedert to the US Pacific coast, a geologically active area where fossil-rich sediments are continuously uplifted by plate tectonic processes.

Vertebrate paleontologists are probably less happy about the old age of Osedax: because it has been feeding on bones for most of the evolutionary history of whales, it is likely to have destroyed many potential whale fossils.

Contact:
Christian-Albrechts-Universität zu Kiel
Institute of Geosciences
Dr. Steffen Kiel
Tel. +49 (0)431/880-2856
E-Mail: steffen.kiel@gmx.de

Dr. Steffen Kiel | EurekAlert!
Further information:
http://www.pnas.org/

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>