Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the body senses emergency

12.01.2009
A receptor, induced on the surface of macrophages under stressful conditions, can detect tissue injury, stimulating inflammation and possibly repair, a RIKEN-led team of molecular biologists has discovered. Their work could provide new leads for anti-inflammatory drugs and healing.

A receptor on macrophages can detect excessive cell death and recruit help

A receptor, induced on the surface of macrophages under stressful conditions, can detect tissue injury, stimulating inflammation and possibly repair, a RIKEN-led team of molecular biologists has discovered. Their work could provide new leads for anti-inflammatory drugs and healing.

Stress, age and body maintenance generate a continuous supply of dead cells, which normally are cleaned up by the macrophages that engulf pathogens and cellular debris. This mechanism, however, becomes overwhelmed at times of large-scale tissue damage, such as that caused by radiation or injury. To deal with such emergencies, the body needs a sensor which not only can detect the scale of the problem, but also that the dead tissue is not foreign.

Earlier research by another group had suggested that cellular stress leads to an upsurge in the activity of a gene, Mincle, which codes for a surface receptor in macrophages. So the RIKEN-led research team investigated the function of this receptor further. Their findings were published recently in Nature Immunology (1).

Initially, the researchers found that the Mincle receptor is associated with another signaling receptor chain, FcRã and triggers macrophage activation through a specific sequence known as the immunoreceptor tyrosine-based activation motif (ITAM). This stimulates the release of cellular hormones—cytokines and chemokines—that summon neutrophils to take part in inflammation and possibly tissue repair. Using a system involving green fluorescent protein to detect ITAM-mediated cell activation, the researchers found that Mincle responds to the presence of dead cells.

They then purified protein material from dead cells bound to the Mincle receptor, and discovered it was SAP130, a protein found in cell nuclei. SAP130 is released from cells where it can come into contact with the Mincle receptor only after they die and break down. In further experiments, the researchers determined the Mincle alert system works in mammals by showing that in living mice in which thymus cells had been killed by irradiation, the recruitment of neutrophils to the site of the damage was prevented by Mincle-specific antibody.

According to the team leader, Takashi Saito of the RIKEN Center for Allergy and Immunology in Yokohama, the research group now wants to determine the role of the alert system in diseases involving tissue damage; how activation of Mincle is related to the induction of autoimmune diseases such as rheumatoid arthritis; and whether it is possible to inhibit or cure inflammation and/or autoimmune diseases by blocking Mincle.

Reference

1. Yamasaki, S., Ishikawa, E., Sakuma, M., Hara, H., Ogata, K. & Saito, T. Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nature Immunology 9, 1179–1188 (2008).

The corresponding author for this highlight is based at the RIKEN Laboratory for Cell Signaling

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/611/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>