Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the body senses emergency

12.01.2009
A receptor, induced on the surface of macrophages under stressful conditions, can detect tissue injury, stimulating inflammation and possibly repair, a RIKEN-led team of molecular biologists has discovered. Their work could provide new leads for anti-inflammatory drugs and healing.

A receptor on macrophages can detect excessive cell death and recruit help

A receptor, induced on the surface of macrophages under stressful conditions, can detect tissue injury, stimulating inflammation and possibly repair, a RIKEN-led team of molecular biologists has discovered. Their work could provide new leads for anti-inflammatory drugs and healing.

Stress, age and body maintenance generate a continuous supply of dead cells, which normally are cleaned up by the macrophages that engulf pathogens and cellular debris. This mechanism, however, becomes overwhelmed at times of large-scale tissue damage, such as that caused by radiation or injury. To deal with such emergencies, the body needs a sensor which not only can detect the scale of the problem, but also that the dead tissue is not foreign.

Earlier research by another group had suggested that cellular stress leads to an upsurge in the activity of a gene, Mincle, which codes for a surface receptor in macrophages. So the RIKEN-led research team investigated the function of this receptor further. Their findings were published recently in Nature Immunology (1).

Initially, the researchers found that the Mincle receptor is associated with another signaling receptor chain, FcRã and triggers macrophage activation through a specific sequence known as the immunoreceptor tyrosine-based activation motif (ITAM). This stimulates the release of cellular hormones—cytokines and chemokines—that summon neutrophils to take part in inflammation and possibly tissue repair. Using a system involving green fluorescent protein to detect ITAM-mediated cell activation, the researchers found that Mincle responds to the presence of dead cells.

They then purified protein material from dead cells bound to the Mincle receptor, and discovered it was SAP130, a protein found in cell nuclei. SAP130 is released from cells where it can come into contact with the Mincle receptor only after they die and break down. In further experiments, the researchers determined the Mincle alert system works in mammals by showing that in living mice in which thymus cells had been killed by irradiation, the recruitment of neutrophils to the site of the damage was prevented by Mincle-specific antibody.

According to the team leader, Takashi Saito of the RIKEN Center for Allergy and Immunology in Yokohama, the research group now wants to determine the role of the alert system in diseases involving tissue damage; how activation of Mincle is related to the induction of autoimmune diseases such as rheumatoid arthritis; and whether it is possible to inhibit or cure inflammation and/or autoimmune diseases by blocking Mincle.

Reference

1. Yamasaki, S., Ishikawa, E., Sakuma, M., Hara, H., Ogata, K. & Saito, T. Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nature Immunology 9, 1179–1188 (2008).

The corresponding author for this highlight is based at the RIKEN Laboratory for Cell Signaling

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/611/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>