Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the body senses emergency

12.01.2009
A receptor, induced on the surface of macrophages under stressful conditions, can detect tissue injury, stimulating inflammation and possibly repair, a RIKEN-led team of molecular biologists has discovered. Their work could provide new leads for anti-inflammatory drugs and healing.

A receptor on macrophages can detect excessive cell death and recruit help

A receptor, induced on the surface of macrophages under stressful conditions, can detect tissue injury, stimulating inflammation and possibly repair, a RIKEN-led team of molecular biologists has discovered. Their work could provide new leads for anti-inflammatory drugs and healing.

Stress, age and body maintenance generate a continuous supply of dead cells, which normally are cleaned up by the macrophages that engulf pathogens and cellular debris. This mechanism, however, becomes overwhelmed at times of large-scale tissue damage, such as that caused by radiation or injury. To deal with such emergencies, the body needs a sensor which not only can detect the scale of the problem, but also that the dead tissue is not foreign.

Earlier research by another group had suggested that cellular stress leads to an upsurge in the activity of a gene, Mincle, which codes for a surface receptor in macrophages. So the RIKEN-led research team investigated the function of this receptor further. Their findings were published recently in Nature Immunology (1).

Initially, the researchers found that the Mincle receptor is associated with another signaling receptor chain, FcRã and triggers macrophage activation through a specific sequence known as the immunoreceptor tyrosine-based activation motif (ITAM). This stimulates the release of cellular hormones—cytokines and chemokines—that summon neutrophils to take part in inflammation and possibly tissue repair. Using a system involving green fluorescent protein to detect ITAM-mediated cell activation, the researchers found that Mincle responds to the presence of dead cells.

They then purified protein material from dead cells bound to the Mincle receptor, and discovered it was SAP130, a protein found in cell nuclei. SAP130 is released from cells where it can come into contact with the Mincle receptor only after they die and break down. In further experiments, the researchers determined the Mincle alert system works in mammals by showing that in living mice in which thymus cells had been killed by irradiation, the recruitment of neutrophils to the site of the damage was prevented by Mincle-specific antibody.

According to the team leader, Takashi Saito of the RIKEN Center for Allergy and Immunology in Yokohama, the research group now wants to determine the role of the alert system in diseases involving tissue damage; how activation of Mincle is related to the induction of autoimmune diseases such as rheumatoid arthritis; and whether it is possible to inhibit or cure inflammation and/or autoimmune diseases by blocking Mincle.

Reference

1. Yamasaki, S., Ishikawa, E., Sakuma, M., Hara, H., Ogata, K. & Saito, T. Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nature Immunology 9, 1179–1188 (2008).

The corresponding author for this highlight is based at the RIKEN Laboratory for Cell Signaling

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/611/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>