Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The body´s bacteria affect intestinal blood vessel formation

Researchers at the Sahlgrenska Academy at the University of Gothenburg, Sweden, have discovered a previously unknown mechanism which helps intestinal bacteria to affect the formation of blood vessels.

The results, which are presented in Nature, may provide future treatments of intestinal diseases and obesity.

There are ten times more bacteria in our intestines than cells in the human body. However, we know relatively little about how the normal gut microbiota functions and the resulting effects on our physiology.

Previously unknown mechanism
In a study of mice, researchers at the University of Gothenburg’s Sahlgrenska Academy have discovered a previously unknown mechanism by which gut microbiota influences intestinal physiology and blood vasculature remodelling. The results, which are published in the online version of the highly respected scientific journal Nature on 11 March, open up future opportunities to control the intestine’s absorption of nutrients, which in turn may be used to treat conditions such as intestinal diseases and obesity.
New blood vessels
The study focuses on villi, finger-like projections which are about one millimetre long, and which increase the surface area of the intestine and maximise its ability to absorb nutrients. In the presence of bacteria, these villi become shorter and wider, which means that new blood vessels must be formed. However, the process involved has previously been unclear.
"Zip code" for protein signals
“Our study shows that signals from the normal gut microbiota that induces blood vessel formation in the small intestine” says researcher Fredrik Bäckhed, who led the study at the Sahlgrenska Academy. “In simplified terms, the intestinal bacteria promote the mucosal cells in the intestine to attach a sugar molecule to a specific protein. The sugar molecule acts like a zip code moving it to the cell surface where it induces signaling.
“It will take time before the results can be applied in a clinical context and converted into new therapies. But our discovery is exciting, and is a result of fundamental basic research which teaches us a great deal about how we live in cooperation with the normal gut microobiota.”

Article Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodeling, published in Nature on 11 March.

Our intestines are colonised with ten times more bacteria than there are cells in the body, and these have a significant impact on our physiology, affecting the development of the immune system, vitamin production and intestinal absorption of nutrients, for example. An altered gut microbiotais associated with various diseases, such as inflammatory intestinal disease, obesity and allergies.
For more information, please contact: Fredrik Bäckhed, docent at the Sahlgrenska Academy
Telephone: +46 (0)31 342 7833

Helena Aaberg | idw
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>