Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the body's energy molecule transmits 3 types of taste to the brain

07.03.2013
Saying that the sense of taste is complicated is an understatement, that it is little understood, even more so. Exactly how cells transmit taste information to the brain for three out of the five primary taste types was pretty much a mystery, until now.

A team of investigators from nine institutions discovered how ATP – the body's main fuel source– is released as the neurotransmitter from sweet, bitter, and umami, or savory, taste bud cells. The CALHM1 channel protein, which spans a taste bud cell's outer membrane to allow ions and molecules in and out, releases ATP to make a neural taste connection. The other two taste types, sour and salt, use different mechanisms to send taste information to the brain.


Taste buds in a circumvallate papilla in a mouse tongue with types I, II and III taste cells visualized by cell-type-specific fluorescent antibodies. Type II cells respond to sweet, bitter, and umami tastes by signaling to the central nervous system by non-vesicular ATP release. Taruno and colleagues have identified CALHM1 as a voltage-gated ATP release channel that mediates this response to these taste modalities.

Credit: Aki Taruno, Perelman School of Medicine, University of Pennsylvania; Nature

Kevin Foskett, PhD, professor of Physiology at the Perelman School of Medicine, University of Pennsylvania, and colleagues from the Monell Chemical Senses Center, the Feinstein Institute for Medical Research, and others, describe in Nature how ATP release is key to this sensory information path. They found that the calcium homeostasis modulator 1 (CALHM1) protein, recently identified by the Foskett lab as a novel ion channel, is indispensable for taste via release of ATP.

"This is an example of a bona fide ATP ion channel with a clear physiological function," says Foskett. "Now we can connect the molecular dots of sweet and other tastes to the brain."

Taste buds have specialized cells that express G-protein coupled receptors (GPCRs) that bind to taste molecules and initiate a complex chain of molecular events, the final step of which Foskett and collaborators show is the opening of a pore in the cell membrane formed by CALHM1. ATP molecules leave the cell through this pore to alert nearby neurons to continue the signal to the taste centers of the brain. CALHM1 is expressed specifically in sweet, bitter, and umami taste bud cells.

Mice in which CALHM1 proteins are absent, developed by Feinstein's Philippe Marambaud, PhD, have severely impaired perceptions of sweet, bitter and umami compounds; whereas, their recognition of sour and salty tastes remains mostly normal. The CALHM1 deficiency affects taste perception without interfering with taste cell development or overall function.
Using the CALHM1 knockout mice, team members from Monell and Feinstein tested how their taste was affected. "The mice are very unusual," says Monell's Michael Tordoff, PhD. "Control mice, like humans, lick avidly for sucrose and other sweeteners, and avoid bitter compounds. However, the mice without CALHM1 treat sweeteners and bitter compounds as if they were water. They can't taste them at all."

From all lines of evidence, the team concluded that CALHM1 is an ATP-release channel required for sweet, bitter, and umami taste perception. In addition, they found that CALHM1 was also required for "nontraditional" Polycose, calcium, and aversive high-salt tastes, implying that the deficit displayed in the knockout animals might best be considered as a loss of all GPCR-mediated taste signals rather than simply sweet, bitter and umami taste.

Interestingly, CALHM1 was originally implicated in Alzheimer's disease, although the link is now less clear. In 2008, co-author Marambaud identified CALHM1 as a risk gene for Alzheimer's. They discovered that a CALHM1 genetic variant was more common among people with Alzheimer's and they went on to show that it leads to a partial loss of function. They also found that this novel ion channel is strongly expressed in the hippocampus, a brain region necessary for learning and memory. So far, there is no connection between taste perception and Alzheimer's risk, but Marambaud suspects that scientists will start testing this hypothesis.

Co-authors include Akiyuki Taruno, Valerie Vingtdeux, Makoto Ohmoto, Zhongming Ma, Gennady Dvoryanchikov, Ang Li, Leslie Adrien, Haitian Zhao, Sze Leung, Maria Abernethy, Jeremy Koppel, Peter Davies, Mortimer M. Civan, Nirupa Chaudhari, Ichiro Matsumoto, and Goran Hellekant.

This work was supported in part by the National Institutes of Health (GM56328, MH059937, NS072775, DC10393, EY13624, R03DC011143, P30 EY001583, P30DC011735).

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $479.3 million awarded in the 2011 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital — the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2011, Penn Medicine provided $854 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

Further reports about: ATP CALHM1 Medical Wellness Medicine Polycose cell membrane

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>