Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blue whale-sized mouthfuls make foraging super efficient

09.12.2010
Blue whales eat 90 times more energy when diving than they use, thanks to big mouths

Diving blue whales can dive for anything up to 15 minutes. However, Bob Shadwick from the University of British Columbia, Canada, explains that blue whales may be able to dive for longer, because of the colossal oxygen supplies they could carry in their blood and muscles, so why don't they?

'The theory was that what they are doing under water must use a lot of energy,' says Shadwick. Explaining that the whales feed by lunging repeatedly through deep shoals of krill, engulfing their own body weight in water before filtering out the nutritious crustaceans, Shadwick says, 'It was thought that the huge drag effect when they feed and reaccelerate this gigantic body must be the cost'. However, measuring the energetics of blue whale lunges at depth seemed almost impossible until Shadwick and his student Jeremy Goldbogen got chatting to John Hildebrand, John Calambokidis, Erin Oleson and Greg Schorr who were skilfully attaching hydrophones, pressure sensors and two-axis accelerometers to the elusive animals. Shadwick and Goldbogen realised that they could use Calambokidis's measurements to calculate the energetic cost of blue whale lunges. They publish their discovery that blue whales swallow almost 2,000,000kJ (almost 480,000kcalories) in a mouthful of krill, and take in 90 times as much energy as they burn during a single dive in The Journal of Experimental Biology at http://jeb.biologists.org.

Analysing the behaviour of each whale, Goldbogen saw that dives lasted between 3.1 and 15.2 minutes and a whale could lunge as many as 6 times during a single dive. Having found previously that he could correlate the acoustic noise of the water swishing past the hydrophone with the speed at which a whale was moving, Goldbogen calculated the blue whales' speeds as they lunged repeatedly during each dive. Next the team had to calculate the forces exerted on the whales as they accelerated their colossal mouthful of water. Noticing that the whales' mouths inflated almost like a parachute as they engulfed the krill, Goldbogen tracked down parachute aerodynamics expert Jean Potvin to help them build a mathematical model to calculate the forces acting on the whales as they lunged. With Potvin on the team, they were able to calculate that the whales used between 3226 kJ of energy during each lunge. But how did this compare with the amount of energy that the whales could extract from each gigantic mouthful of krill?

Goldbogen estimated the volume of the whales' mouths by searching the whaling literature for morphological data and teamed up with paleontologist Nick Pyenson to measure the size of blue whale jaw bones in several natural history museums. He also obtained krill density values from the literature – which are probably on the low side. Then he calculated the volume of water and amount of krill that a whale could engulf and found that the whales could consume anything from 34,776kJ up to an unprecedented 1,912,680kJ from a single mouthful of krill, providing as much as 240 times as much energy as the animals used in a single lunge. And when the team calculated the amount of energy that a whale could take on board during a dive, they found that each foraging dive could provide 90 times as much energy as they used.

Shadwick admits that he was initially surprised that the whales' foraging dives were so efficient. 'We went over the numbers a lot,' he remembers, but then he and Goldbogen realised that the whales' immense efficiency makes sense. 'The key to this is the size factor because they can engulf such a large volume with so much food in it that it really pays off,' says Shadwick.

IF REPORTING ON THIS STORY, PLEASE MENTION THE JOURNAL OF EXPERIMENTAL BIOLOGY AS THE SOURCE AND, IF REPORTING ONLINE, PLEASE CARRY A LINK TO: http://jeb.biologists.org

REFERENCE: Goldbogen, J. A., Calambokidis, J., Oleson, E., Potvin, J., Pyenson, N. D., Schorr, G. and Shadwick, R. E. (2011). Mechanics, hydrodynamics and energetics of blue whale lunge feeding: efficiency dependence on krill density. J. Exp. Biol. 214, 131-146.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to jeb.biologists.com is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT permissions@biologists.com

Kathryn Knight | EurekAlert!
Further information:
http://www.biologists.com

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>