Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Blowing in the wind: How hidden flower features are crucial for bees

As gardeners get busy filling tubs and borders with colourful bedding plants, scientists at the Universities of Cambridge and Bristol have discovered more about what makes flowers attractive to bees rather than humans.
Published today in the British Ecological Society's journal Functional Ecology, their research reveals that Velcro-like cells on plant petals play a crucial role in helping bees grip flowers – especially when the wind gets up.

The study focuses on special cells found on the surface of petals, whose stunning structure is best seen under an electron microscope. According to lead author, Dr Beverley Glover: "Many of our common garden flowers have beautiful conical cells if you look closely – roses have rounded conical petal cells while petunias have really long cells, giving petunia flowers an almost velvety appearance, particularly visible in the dark-coloured varieties."

Glover's group previously discovered that when offered snapdragons with conical cells and a mutant variety without these cells, bees prefer the former because the conical cells help them grip the flower. "It's a bit like Velcro, with the bee claws locking into the gaps between the cells," she explains.

Compared with many garden flowers, however, snapdragons have very complicated flowers; bees have to land on a vertical face and pull open a heavy lip to reach the nectar so Glover was not surprised that grip helps. But she wanted to discover how conical cells help bees visiting much simpler flowers.

"Many of our garden flowers like petunias, roses and poppies are very simple saucers with nectar in the bottom, so we wanted to find out why having conical cells to provide grip would be useful for bees landing on these flowers. We hypothesised that maybe the grip helped when the flowers blow in the wind."

Using two types of petunia, one with conical cells and a mutant line with flat cells, Glover let a group of bumblebees that had never seen petunias before forage in a large box containing both types of flower, and discovered they too preferred the conical-celled flowers.

They then devised a way of mimicking the way flowers move in the wind. "We used a lab shaking platform that we normally use to mix liquids, and put the flowers on that. As we increased the speed of shaking, mimicking increased wind speed, the bees increased their preference for the conical-celled flowers," she says.

The results, Glover says, give ecologists a deeper insight into the extraordinarily subtle interaction between plant and pollinator. "Nobody knew what these cells were for, and now we have a good answer that works for pretty much all flowers," she concludes. "It's is too easy to look at flowers from a human perspective, but when you put yourself into the bee's shoes you find hidden features of flowers can be crucial to foraging success."
Katrina Alcorn, Heather Whitney and Beverley Glover (2012). 'Flower movement increases pollinator preference for flowers with better grip', doi: 10.1111/j.1365-2435.2012.02009.x is published in Functional Ecology on Tuesday 29 May 2012.

Notes for editors
1. For copies of the paper, images and more information, contact Dr Beverley Glover, University of Cambridge, tel: +44 (0)1223 333938, mob: +44 (0)7814 103625, email: or Genevieve Maul, Communications Officer, University of Cambridge, tel: +44 (0)1223 332300, mob: +44 (0)7774 017464, email:

2. Conical cells are cone- or pyramid-shaped cells found on the epidermis of flower petals. They are small – usually about 1/50th of a millimetre across, and can vary in steepness and total size. They are extremely widespread – found in around 80% of flowers with petals – yet the only place they occur in plants is on their petals. Production of conical cells is controlled by a single gene, called MIXTA in snapdragons (where it was first found), which switches on a set of other genes that make the cone shape develop. Conical cells act as tiny lenses, focussing light inside the cell, where it can be absorbed by the chemical pigments inside. As a result, conical cells look a deeper colour than flat cells.

3. Functional Ecology is published by Wiley-Blackwell for the British Ecological Society. Contents lists are available at

4. The British Ecological Society is a learned society, a registered charity and a company limited by guarantee. Established in 1913 by academics to promote and foster the study of ecology in its widest sense, the Society has 4,000 members in the UK and abroad. Further information is available at

Beverley Glover | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Sweetening neurotransmitter receptors and other neuronal proteins
28.10.2016 | Max-Planck-Institut für Hirnforschung

nachricht A new look at thyroid diseases
28.10.2016 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>