Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood Vessels Contribute to Their Own Growth and Oxygen Delivery to Tissues and Tumors

16.09.2009
Researchers at the University of North Carolina at Chapel Hill School of Medicine and the College of Arts & Sciences have identified a new biological process that spurs the growth of new blood vessels.

Vascular networks form and expand by “sprouting,” similar to the way trees grow new branches. The process allows fresh oxygen and nutrients to be delivered to tissues, whether in a developing embryo or a cancerous tumor.

Up until now, scientists thought that the molecular signals to form new sprouts came from outside the vessel. But new research from UNC has shown that signals can also come from within the blood vessel, pushing new blood vessel sprouts outward.

The findings, published in the Sept. 15 issue of the journal Developmental Cell, could give important insights into the formation of the vasculature needed to feed new tumors.

In experiments using mouse embryonic stem cells and mouse retinas, the researchers found that defects in a protein called Flt-1 lead to abnormal sprouts and poor vessel networks. Other research recently showed that levels of Flt-1 protein are particularly low in the dilated and leaky blood vessels that supply tumors with oxygen.

“The blood vessels themselves seem to participate in the process guiding the formation of the vascular network,” said senior study author Victoria L. Bautch, Ph.D., professor of biology at UNC. “They do not just passively sit there getting acted upon by signals coming from the outside in. Rather, they produce internal cues that interact with external cues to grow.”

The growth of new blood vessels can be stimulated by cascades of events within the cell – known as pathways – the most notable of which centers around the three proteins Flt-1, Flk-1 and VEGF. Scientists have known for years that Flk-1 is a positive regulator that responds to VEGF by pulling the emerging sprout outward from its parent blood vessel.

The role of its sister protein Flt-1, however, was not clearly understood. Bautch and colleagues hypothesized that Flt-1 is a negative regulator -- soaking up VEGF molecules so they are not available to interact with Flk-1 and signal for new blood vessels.

The researchers mixed two different types of mouse embryonic stem cells – one batch with normal Flt-1 protein levels, the other with no Flt-1 protein. They found that the genetic makeup of the area at the base of the sprout – rather than at the sprout itself – determined whether the sprout behaved normally or abnormally.

“The cells on each side of sprout produce and send out the soluble form of the protein, blocking the sprout from forming anywhere but in one spot and in one direction,” says Bautch. “So when the sprout first forms, instead of flopping back onto its parent vessel, it has a corridor to push it forward away from the parent.”

Bautch, who is also a member of the Program in Molecular Biology and Biotechnology, the UNC McAllister Heart Institute and UNC Lineberger Comprehensive Cancer Center, notes that the more scientists understand about the sophistication and complexity of the mechanisms guiding the formation of blood vessel sprouts, the better equipped they will be to develop therapeutic interventions to produce or to halt new blood vessels.

Funding for study came from the National Institutes of Health and the American Heart Association. Study co-authors from UNC include John C. Chappell, Ph.D., postdoctoral fellow; and Sarah M. Taylor, graduate student.

Les Lang | Newswise Science News
Further information:
http://www.unc.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>