Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood is thicker than water – and blood plasma is, too

18.02.2013
Joint press release from Saarland University and the University of Pennsylvania

A German-American research team has succeeded in demonstrating that blood plasma has a much greater effect on how blood flows than was previously thought. The groups led by Christian Wagner (Saarland University, Germany) and Paulo E. Arratia (University of Pennsylvania, USA) have refuted the view, held for decades, that plasma behaves like water. Blood plasma is far more elastic and viscous than previously thought and, like ketchup, its flow properties depend on the applied pressure.

The results are significant because they can help to improve our understanding of medical conditions, such as thrombosis, aneurysms and arteriosclerosis. The research team is publishing its results in Physical Review Letters and the American Physical Society has highlighted the work on its Physics website (http://physics.aps.org), placing it on the Focus List of important physics news.

Blood flows differently than water. Anyone who has ever cut themselves knows that blood flows viscously and rather erratically. The similarity between blood and ketchup is something not only filmmakers are aware of. Experts refer to these materials as “non-Newtonian fluids,” of which ketchup and blood are prime examples. These fluids have flow properties that change depending on conditions, with some becoming more viscous, while others become less viscous. Blood (like ketchup) is a “shear thinning fluid” that becomes less viscous with increasing pressure and it is this that allows blood to flow into the narrowest of capillaries. The flow properties of water are, in contrast, essentially constant.

Up until now it has been assumed that the special flow characteristics exhibited by blood were mainly due to the presence of the red blood cells, which account for about 45 percent of the blood’s volume. Blood plasma was generally regarded simply as a spectator that played no active role.

For decades, researchers have assumed that blood plasma flows like water. After all, plasma, the liquid in which the blood cells are suspended, consists to 92 percent of water. But results from researchers at Saarland University and at the University of Pennsylvania have now shown that plasma is a very special fluid that plays a crucial part in determining how blood flows. The results demonstrate that blood plasma is itself a non-Newtonian fluid.

According to the study’s findings, the complex flow behavior of blood plasma could play a crucial role with respect to vascular wall deposits, aneurysms or blood clots. The results from this research may well help to improve computer simulations of this kind of pathological process.

The research team around experimental physicist Christian Wagner and engineer Paulo E. Arratia have studied the flow dynamics of blood experimentally. The work at Saarland University involved experiments in which the blood plasma was allowed to form drops inside a specially built apparatus equipped with high-speed cameras fitted with high-resolution microscope lenses to analyze drop formation. “Our experiments showed that the blood plasma forms threads, that is, it exhibits an extensional viscosity, which is something we do not observe in water,” explained Professor Wagner. The plasma shows “viscoelastic” properties, which means that it exhibits both viscous and elastic behavior when deformed, forming threads that are typical of non-Newtonian fluids.

The studies by Professor Arratia and his team at the University of Pennsylvania involved a microfluidic approach in which they developed a model of a microvascular system in order to study the flow properties of blood plasma. Their measurements showed that blood plasma exhibits a flow behavior different to that of water and that plasma can demonstrate a substantially higher flow resistance. “An important part of our study was developing microfluidic instruments sensitive enough to pick up the small differences in viscosity that are the signature of non-Newtonian fluids,” explained Professor Arratia.

Experiments performed by Professor Wagner’s team in Saarbrücken also showed that blood plasma influences the creation of vortices in flowing blood. These vortices may facilitate the formation of deposits on blood vessel walls which could influence blood clot formation. In one of their experiments, the research team let plasma flow through a narrow channel of the kind found in stenotic (constricted) arteries or in a stent (a medical implant inserted into constricted blood vessels). The vortical structures were detected at the end, but also at the entrance, of the narrow channel and their formation is a direct result of the viscoelastic flow properties of blood plasma.

The research at Saarland University was performed within the Research Training Group “Structure Formation and Transport in Complex Systems” funded by the German Research Foundation (DFG). The research at the University of Pennsylvania was supported by the US National Science Foundation - CBET- 0932449.

Original publication:
M. Brust, C. Schaefer, R. Doerr, L. Pan, M. Garcia, P. E. Arratia, and C. Wagner (2013):
"Rheology of human blood plasma: Viscoelastic versus Newtonian behavior",
Phys. Rev. Lett., 110, 078305 (2013)
DOI: 10.1103/PhysRevLett.110.078305
http://link.aps.org/doi/10.1103/PhysRevLett.110.078305
Physics (http://physics.aps.org/):
Focus: http://physics.aps.org/articles/v6/18 (video)
Contact:
Professor Dr. Christian Wagner
Department of Experimental Physics, Saarland University
Tel.: 0049 (0)681 302-3003 or -2416; E-mail: c.wagner@mx.uni-saarland.de
http://agwagner.physik.uni-saarland.de/
Professor Paulo E. Arratia
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania
Tel.: 001 215 746-2174; E-mail: parratia@seas.upenn.edu
www.seas.upenn.edu/~parratia
Press photographs are available at www.uni-saarland.de/pressefotos and can be used at no charge. Please read and comply with the conditions of use.

Note for radio journalists: Studio-quality telephone interviews can be conducted with researchers at Saarland University using broadcast audio IP codec technology. Interview requests should be addressed to the university’s Press and Public Relations Office (+49 (0)681 302-2601).

Friederike Meyer zu Tittingdorf | idw
Further information:
http://physics.aps.org/

More articles from Life Sciences:

nachricht New method opens crystal clear views of biomolecules
11.02.2016 | Deutsches Elektronen-Synchrotron DESY

nachricht Scientists from MIPT gain insights into 'forbidden' chemistry
11.02.2016 | Moscow Institute of Physics and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

New method opens crystal clear views of biomolecules

11.02.2016 | Life Sciences

Scientists take nanoparticle snapshots

11.02.2016 | Physics and Astronomy

NASA sees development of Tropical Storm 11P in Southwestern Pacific

11.02.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>