Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The bizarre lives of bone-eating worms

11.11.2009
The females of the recently discovered Osedax marine worms feast on submerged bones via a complex relationship with symbiotic bacteria, and they are turning out to be far more diverse and widespread than scientists expected.

Californian researchers investigating the genetic history of Osedax worms have found that up to twelve further distinct evolutionary lineages exist beyond the five species already described. The new findings about these beautiful sea creatures with unusual sexual and digestive habits are published today in the online open access journal BMC Biology.

Geneticists placed the new Osedax genus in the polychaete annelid family Siboglinidae when it was first discovered on whalebones in Monterey Bay, California in 2004. Siboglinidae or 'beard worms' are among the few known animals that, as adults, completely lack a mouth, gut and anus, and rely entirely on endosymbiotic bacteria for their nutrition. Found to date in the eastern and western Pacific and the north Atlantic, Osedax are unique because they penetrate and digest bones using bacteria housed in a complex branching "root" system. Sexual inequality is also part of daily life for Osedax: harems of dwarf males live inside the tubes of the much larger female.

Robert Vrijenhoek and Shannon Johnson from Monterey Bay Aquarium Research Institute, together with Greg Rouse from Scripps Institution of Oceanography, both in California, US looked at two mitochondrial genes and three nuclear genes from Monterey Bay Osedax worms. Their study revealed 17 distinct evolutionary lineages, clustered into five clades (groups including a single common ancestor and all its descendants). The researchers could tell these clades apart based on the anatomy of the worms as well as their genetics.

Precisely when these Osedax boneworms split from their other beard worm relatives depends whether researchers pick a 'molecular clock' calibrated for shallow or deep-sea invertebrates (Osedax have been found at depths ranging from 30 to 3000 metres). Based on the shallow invertebrate scenario Osedax probably branched off about 45 million years ago when archeocete cetaceans first appeared and then diversified during the late Oligocene and early Miocene when toothed and baleen whales arrived. Using the slower, deep-sea invertebrate clock model Osedax evolved during the Cretaceous and began to diversify during the Early Paleocene, at least 20 million years before the origin of large marine mammals.

Research to settle the evolutionary age of Osedax might examine fossil bones from Cretaceous marine reptiles and late Oligocene cetaceans to find possible trace fossils left by Osedax roots, suggest the authors. "Regardless, the present molecular evidence suggests that the undescribed Osedax lineages comprise evolutionarily significant units that have been separate from one another for many millions of years, and provide a solid foundation for their future descriptions as new species," concludes Vrijenhoek.

Notes to Editors:

1. A remarkable diversity of bone-eating worms (Osedax; Siboglinidae; Annelida)
Robert C Vrijenhoek, Shannon B Johnson and Greg W Rouse
BMC Biology (in press)
2. BMC Biology - the flagship biology journal of the BMC series - publishes research and methodology articles of special importance and broad interest in any area of biology and biomedical sciences. BMC Biology (ISSN 1741-7007) is covered by PubMed, MEDLINE, BIOSIS, CAS, Scopus, EMBASE, Zoological Record, Thomson Reuters (ISI) and Google Scholar. It has an Impact Factor of 4.73

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Graeme Baldwin | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>