Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The bizarre lives of bone-eating worms

The females of the recently discovered Osedax marine worms feast on submerged bones via a complex relationship with symbiotic bacteria, and they are turning out to be far more diverse and widespread than scientists expected.

Californian researchers investigating the genetic history of Osedax worms have found that up to twelve further distinct evolutionary lineages exist beyond the five species already described. The new findings about these beautiful sea creatures with unusual sexual and digestive habits are published today in the online open access journal BMC Biology.

Geneticists placed the new Osedax genus in the polychaete annelid family Siboglinidae when it was first discovered on whalebones in Monterey Bay, California in 2004. Siboglinidae or 'beard worms' are among the few known animals that, as adults, completely lack a mouth, gut and anus, and rely entirely on endosymbiotic bacteria for their nutrition. Found to date in the eastern and western Pacific and the north Atlantic, Osedax are unique because they penetrate and digest bones using bacteria housed in a complex branching "root" system. Sexual inequality is also part of daily life for Osedax: harems of dwarf males live inside the tubes of the much larger female.

Robert Vrijenhoek and Shannon Johnson from Monterey Bay Aquarium Research Institute, together with Greg Rouse from Scripps Institution of Oceanography, both in California, US looked at two mitochondrial genes and three nuclear genes from Monterey Bay Osedax worms. Their study revealed 17 distinct evolutionary lineages, clustered into five clades (groups including a single common ancestor and all its descendants). The researchers could tell these clades apart based on the anatomy of the worms as well as their genetics.

Precisely when these Osedax boneworms split from their other beard worm relatives depends whether researchers pick a 'molecular clock' calibrated for shallow or deep-sea invertebrates (Osedax have been found at depths ranging from 30 to 3000 metres). Based on the shallow invertebrate scenario Osedax probably branched off about 45 million years ago when archeocete cetaceans first appeared and then diversified during the late Oligocene and early Miocene when toothed and baleen whales arrived. Using the slower, deep-sea invertebrate clock model Osedax evolved during the Cretaceous and began to diversify during the Early Paleocene, at least 20 million years before the origin of large marine mammals.

Research to settle the evolutionary age of Osedax might examine fossil bones from Cretaceous marine reptiles and late Oligocene cetaceans to find possible trace fossils left by Osedax roots, suggest the authors. "Regardless, the present molecular evidence suggests that the undescribed Osedax lineages comprise evolutionarily significant units that have been separate from one another for many millions of years, and provide a solid foundation for their future descriptions as new species," concludes Vrijenhoek.

Notes to Editors:

1. A remarkable diversity of bone-eating worms (Osedax; Siboglinidae; Annelida)
Robert C Vrijenhoek, Shannon B Johnson and Greg W Rouse
BMC Biology (in press)
2. BMC Biology - the flagship biology journal of the BMC series - publishes research and methodology articles of special importance and broad interest in any area of biology and biomedical sciences. BMC Biology (ISSN 1741-7007) is covered by PubMed, MEDLINE, BIOSIS, CAS, Scopus, EMBASE, Zoological Record, Thomson Reuters (ISI) and Google Scholar. It has an Impact Factor of 4.73

3. BioMed Central ( is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Graeme Baldwin | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>