Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The bizarre lives of bone-eating worms

11.11.2009
The females of the recently discovered Osedax marine worms feast on submerged bones via a complex relationship with symbiotic bacteria, and they are turning out to be far more diverse and widespread than scientists expected.

Californian researchers investigating the genetic history of Osedax worms have found that up to twelve further distinct evolutionary lineages exist beyond the five species already described. The new findings about these beautiful sea creatures with unusual sexual and digestive habits are published today in the online open access journal BMC Biology.

Geneticists placed the new Osedax genus in the polychaete annelid family Siboglinidae when it was first discovered on whalebones in Monterey Bay, California in 2004. Siboglinidae or 'beard worms' are among the few known animals that, as adults, completely lack a mouth, gut and anus, and rely entirely on endosymbiotic bacteria for their nutrition. Found to date in the eastern and western Pacific and the north Atlantic, Osedax are unique because they penetrate and digest bones using bacteria housed in a complex branching "root" system. Sexual inequality is also part of daily life for Osedax: harems of dwarf males live inside the tubes of the much larger female.

Robert Vrijenhoek and Shannon Johnson from Monterey Bay Aquarium Research Institute, together with Greg Rouse from Scripps Institution of Oceanography, both in California, US looked at two mitochondrial genes and three nuclear genes from Monterey Bay Osedax worms. Their study revealed 17 distinct evolutionary lineages, clustered into five clades (groups including a single common ancestor and all its descendants). The researchers could tell these clades apart based on the anatomy of the worms as well as their genetics.

Precisely when these Osedax boneworms split from their other beard worm relatives depends whether researchers pick a 'molecular clock' calibrated for shallow or deep-sea invertebrates (Osedax have been found at depths ranging from 30 to 3000 metres). Based on the shallow invertebrate scenario Osedax probably branched off about 45 million years ago when archeocete cetaceans first appeared and then diversified during the late Oligocene and early Miocene when toothed and baleen whales arrived. Using the slower, deep-sea invertebrate clock model Osedax evolved during the Cretaceous and began to diversify during the Early Paleocene, at least 20 million years before the origin of large marine mammals.

Research to settle the evolutionary age of Osedax might examine fossil bones from Cretaceous marine reptiles and late Oligocene cetaceans to find possible trace fossils left by Osedax roots, suggest the authors. "Regardless, the present molecular evidence suggests that the undescribed Osedax lineages comprise evolutionarily significant units that have been separate from one another for many millions of years, and provide a solid foundation for their future descriptions as new species," concludes Vrijenhoek.

Notes to Editors:

1. A remarkable diversity of bone-eating worms (Osedax; Siboglinidae; Annelida)
Robert C Vrijenhoek, Shannon B Johnson and Greg W Rouse
BMC Biology (in press)
2. BMC Biology - the flagship biology journal of the BMC series - publishes research and methodology articles of special importance and broad interest in any area of biology and biomedical sciences. BMC Biology (ISSN 1741-7007) is covered by PubMed, MEDLINE, BIOSIS, CAS, Scopus, EMBASE, Zoological Record, Thomson Reuters (ISI) and Google Scholar. It has an Impact Factor of 4.73

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Graeme Baldwin | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>