Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bizarre insect inbreeding signals an end to males: News tips from the American Naturalist

28.07.2011
Bizarre insect inbreeding signals an end to males

A bizarre form of inbreeding could spell the end of males in one insect species, according to researchers from Oxford University. The research focused on cottony cushion scales, a hermaphroditic bug species in which females appear to fertilize their own eggs.

"It turns out that females are not really fertilizing their eggs themselves, but instead are having this done by a parasitic tissue that infects them at birth," said Laura Ross, one of the study's authors. "It seems that this infectious tissue derives from leftover sperm from their fathers." In effect, the tissue enables males to father offspring with both their mates and then their daughters. According to a mathematical model developed by Ross and her co-author Andy Gardner, this odd reproductive tactic could eliminate the need for males in the species. Once the parasitic fathers become widespread in a population, females will be inclined to reproduce with them instead of regular males. Regular males, as a result, become very rare because they have a hard time finding willing mates.

Andy Gardner and Laura Ross, "The Evolution of Hermaphroditism by an Infectious Male-Derived Cell Lineage: An Inclusive-Fitness Analysis."

Without competition, island frogs evolve rapidly

Scientists led by Ben Evans of McMaster University have documented the rapid evolution of new fanged frog species on the island of Sulawesi, near the Philippines. The team found 13 species of fanged frog on the island, nine of which hadn't previously been described. The species differ in body size, amount of webbing in their feet, and even how they raise their young—all in accordance with the demands of their distinct ecological niches. Sulawesi has the same number of fanged frog species as the Philippine archipelago. "We would expect to find more species on the archipelago because it's so much larger, but that's not the case," Evans said. Why such diversity on the smaller island? There's less competition on Sulawesi, the researchers say. Fanged frogs in the Philippines have to compete with another genus of frogs, Platymantis. Platymantis never made to hop over to Sulawesi, leaving the fanged frogs free to spread out into new habitat niches, to which they eventually adapted. The rapid evolution of these frogs is a striking example of adaptive radiation—a concept Charles Darwin famously recorded in Galapagos finches.

Mohammad I. Setiadi, Jimmy A. McGuire, Rafe M. Brown, Mohammad Zubairi, Djoko T. Iskandar, Noviar Andayani, Jatna Supriatna, and Ben J. Evans, "Adaptive Radiation and Ecological Opportunity in Sulawesi and Philippine Fanged Frog (Limnonectes) Communities."

It takes a village, but only in times of plenty

Acorn woodpeckers are cooperative breeders, meaning adult birds often join breeding groups and help raise young that are not their own. Scientists have long thought that communal breeding may have evolved to help birds deal with food shortages and other difficult times. But a study by researchers from Cornell and Gonzaga shows that for acorn woodpeckers, the opposite seems to be true: Help contributed by other family members is beneficial only when the acorn crop is large. "Apparently when the crop is poor, the additional food that helpers provide to nestlings doesn't make up for the extra resources those helpers are using," said Walter Koenig, the study's lead author. "Whereas when the acorn crop is good, their help is enough to significantly increase both the survivorship of the other birds in the group and the number of young the group can fledge. At least in acorn woodpeckers, living together in a family only confers benefits when food is plentiful."

Walter D. Koenig, Eric L. Walters, and Joseph Haydock, "Variable Helper Effects, Ecological Conditions, and the Evolution of Cooperative Breeding in the Acorn Woodpecker."

Bacterial spite: When killing yourself is a good strategy

Spite evolves in close quarters, according to research led by Fredrik Inglis of the University of Oxford and ETH, Zurich. Inglis and his team studied a bacterial species in which individuals sometimes explode, releasing a toxin into the environment that is deadly to competing bacteria. This kamikaze-like behavior is a bit of an evolutionary mystery. How could a behavior in which an individual gives up its chance to reproduce evolve? Inglis and his team had previously developed a mathematical model showing that such spite is quite likely to evolve in bacterial colonies that are clonal, meaning individuals share the same genes. The model shows that if a few individuals sacrifice themselves to take out competitors, they increase the chances that their genes (albeit in other individuals) will be passed to the next generation. Lab experiments performed by Inglis and his team support the model. The experiments further show that spiteful species are most successful when competing with other species for the same resource patch. Spite is far less successful when multiple patches are available. The results, Inglis says, could provide insight into how and when bacteria cause disease.

R. Fredrik Inglis, Patrick Garfjeld Roberts, Andy Gardner, and Angus Buckling, "Spite and the Scale of Competition in Pseudomonas aeruginosa."

For the complete table of contents for the August issue, go to www.journals.uchicago.edu/an.

Since its inception in 1867, The American Naturalist has maintained its position as one of the world's most renowned, peer-reviewed publications in ecology, evolution, and population and integrative biology research. While addressing topics in community and ecosystem dynamics, evolution of sex and mating systems, organismal adaptation, and genetic aspects of evolution, AmNat emphasizes sophisticated methodologies and innovative theoretical syntheses--all in an effort to advance the knowledge of organic evolution and other broad biological principles.

Kevin Stacey | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>