Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bird flu vaccine protects people and pets

20.10.2008
A single vaccine could be used to protect chickens, cats and humans against deadly flu pandemics, according to an article published in the November issue of the Journal of General Virology. The vaccine protects birds and mammals against different flu strains and can even be given to birds while they are still in their eggs, allowing the mass vaccination of wild birds.

The emergence of bird flu has posed a major challenge to scientists designing vaccines as it can infect a number of different animals, including birds, pets and people. Now, researchers in the USA have discovered that a vaccine based on a bird flu virus could be used to protect several species against different influenza viruses.

"The world is experiencing a pandemic of influenza in birds caused by an H5N1 virus. Although it has been restricted to Eurasia and some countries in Africa, there is a risk that this virus may spread worldwide," said Professor Daniel Perez from the University of Maryland, USA. "The H5N1 virus also has an unusual expanded host range: not only birds and humans have been infected but also cats, which are usually resistant to influenza. To prepare for a pandemic, it would be ideal to have a vaccine that could be used in multiple animal species."

The researchers found that the central genes or 'backbone' of the H9N2 virus that infects guinea fowl can protect birds and mice against highly pathogenic strains of influenza. They modified the virus to make it less pathogenic and then used it to vaccinate mice. Three weeks after being vaccinated, the mice were infected with the potentially lethal H1N1 virus - the same virus that caused the 1918 Spanish flu pandemic. All the vaccinated mice survived with no signs of disease. Vaccinated mice also survived infection with the deadly H5N1 bird flu virus, again showing no signs of disease.

"Our results show that the H9N2 backbone vaccine can be used to protect mice against two different, highly pathogenic strains of influenza. We chose genes from H9N2 influenza for the vaccine because the virus can infect many different animals, including chickens, mice and pigs," said Professor Perez. "A very important limitation in the current design of flu vaccines is that they are usually species specific. Our approach involves a universal backbone that can be used in several different species, including humans."

More importantly, this live attenuated virus provided effective protection when it was administered to birds before they had hatched. By vaccinating eggs against influenza, we could protect wild bird species as well as domestic chickens against pandemic flu strains, limiting the spread of disease to humans.

"If an emerging strain of bird flu spreads among a broad range of animal species, we should expect major health, economic and ecological consequences," said Professor Perez. "It is unrealistic to consider preparing different vaccines specifically tailored to different animal species in this situation. An influenza vaccine that could protect different species would save valuable time during a pandemic."

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>