Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bird flu vaccine protects people and pets

20.10.2008
A single vaccine could be used to protect chickens, cats and humans against deadly flu pandemics, according to an article published in the November issue of the Journal of General Virology. The vaccine protects birds and mammals against different flu strains and can even be given to birds while they are still in their eggs, allowing the mass vaccination of wild birds.

The emergence of bird flu has posed a major challenge to scientists designing vaccines as it can infect a number of different animals, including birds, pets and people. Now, researchers in the USA have discovered that a vaccine based on a bird flu virus could be used to protect several species against different influenza viruses.

"The world is experiencing a pandemic of influenza in birds caused by an H5N1 virus. Although it has been restricted to Eurasia and some countries in Africa, there is a risk that this virus may spread worldwide," said Professor Daniel Perez from the University of Maryland, USA. "The H5N1 virus also has an unusual expanded host range: not only birds and humans have been infected but also cats, which are usually resistant to influenza. To prepare for a pandemic, it would be ideal to have a vaccine that could be used in multiple animal species."

The researchers found that the central genes or 'backbone' of the H9N2 virus that infects guinea fowl can protect birds and mice against highly pathogenic strains of influenza. They modified the virus to make it less pathogenic and then used it to vaccinate mice. Three weeks after being vaccinated, the mice were infected with the potentially lethal H1N1 virus - the same virus that caused the 1918 Spanish flu pandemic. All the vaccinated mice survived with no signs of disease. Vaccinated mice also survived infection with the deadly H5N1 bird flu virus, again showing no signs of disease.

"Our results show that the H9N2 backbone vaccine can be used to protect mice against two different, highly pathogenic strains of influenza. We chose genes from H9N2 influenza for the vaccine because the virus can infect many different animals, including chickens, mice and pigs," said Professor Perez. "A very important limitation in the current design of flu vaccines is that they are usually species specific. Our approach involves a universal backbone that can be used in several different species, including humans."

More importantly, this live attenuated virus provided effective protection when it was administered to birds before they had hatched. By vaccinating eggs against influenza, we could protect wild bird species as well as domestic chickens against pandemic flu strains, limiting the spread of disease to humans.

"If an emerging strain of bird flu spreads among a broad range of animal species, we should expect major health, economic and ecological consequences," said Professor Perez. "It is unrealistic to consider preparing different vaccines specifically tailored to different animal species in this situation. An influenza vaccine that could protect different species would save valuable time during a pandemic."

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>