Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioweapon ricin - scientists solve mystery through revolutionary new technology

02.12.2011
A key protein that controls how the deadly plant poison and bioweapon ricin kills, has finally been identified by researchers at the Institute of Molecular Biotechnology in Vienna, Austria. The discovery was made using a revolutionary technology that combines stem cell biology and modern screening methods, and reported today (Friday 2 December 2011) in the scientific journal Cell Stem Cell.

Shocking news spread in August this year. Al Quaida, a terror organization, was reported to be producing bombs containing the poison ricin to attack shopping centers, airports, or train stations. Since the First World War, ricin has had a gruesome reputation as a bioweapon. It is one of the deadliest plant based poisons in the world. Even a tiny amount can kill a person within two to three days after getting into the bloodstream. And it comes from the humble castor oil bean, available in many health food shops or online.

How the poison works

Castor oil is a powerful laxative, used medicinally for centuries, but the raw beans also contain small amounts of the poison ricin. So far no antidote is available. But now Ulrich Elling, a scientist on the research team led by Prof Josef Penninger at the Institute for Molecular Biotechnology (IMBA) of the Austrian Academy of Sciences in Vienna, has identified a protein molecule called Gpr107. This protein in the targeted cells is essential for the deadly effect of ricin. In other words, cells which lack Gpr107 are immune to the poison.

Ulrich Elling is optimistic, saying "Our research suggests that a specific antidote could now be developed by making a small molecule to block the Gpr107 protein."

New technology allows screening of the entire mammal genome

The researchers at IMBA were able to find in just a few weeks what others have been trying to find for decades. Their rapid success was made possible by a pioneering new method of genetic research developed largely by Ulrich Elling and Josef Penninger. With this new method, an entire mammal genome can be screened for mutations within a reasonable time frame.

Until now, screening methods for mice, rats and other mammals have focused on finding one single mutation. This was done using a technique called RNA interference or by breeding a suitable ‘knock-out mouse’ to study the effect of removing a single gene. But RNA interference doesn't always work, and breeding a knock-out mouse takes years and considerable effort.

That's why Josef Penninger sees this powerful technology as a revolution in biomedicine. "We've now succeeded in combining the genetics of yeast, which has a single chromosome set that allows instant gene mutation, with stem cell biology”, he says. “For decades researchers have been looking for a system in mammals which would allow scientists to reconstruct millions of gene mutations simultaneously. We have solved the puzzle and even broke a paradigm in biology – we managed to make stable mouse stem cells with a single set of chromosomes and developed novel tools to use such stem cells to rapidly check virtually all genes at the same time for a specific function.”

This new technology helped Ulrich Elling in unraveling the toxic effect of ricin. He tested the poison in thousands of different mutations of mouse stem cells, and discovered that 49 different genetic mutations were present in one single protein, Gpr107. Obviously, a mutation in this protein saved the cells.

Combination with stem cell research reveals broad range of applications

The incredible potential in this discovery becomes even clearer in the light of stem cells' ability to transform into any cell in the human body. Josef Penninger is excited. "The possible uses of this discovery are endless. They range from fundamental issues, like which genes are necessary for the proper function of a heart muscle cell, to concrete applications as we have done in the case of ricin toxicity."

Penninger's team is already working on its next projects, including studies on how tumor cells acquire resistance to chemotherapy, a key issue in the development of cancer, and how nerve cells can regenerate, to offer hope in cases of paraplegia.

Notes to news editors:

The scientific study "Forward and Reverse Genetics through Derivation of Haploid Mouse Embryonic Stem Cells" appears in Cell Stem Cell on Friday 2 December 2011.

The study was conducted by an international consortium from Austria, Canada, Germany and the USA under the leadership of IMBA. Special thanks go to William Stanford from the Sprott Centre for Stem Cell Research at the Ottawa Hospital Research Institute, Harald von Melchner and Frank Schnütgen from the University of Cologne, Joseph Ecker from San Diego, and Johannes Zuber and Alex Stark from the IMP in Vienna.

The Institute for Molecular Biotechnology (IMBA) is a research institute of the Austrian Academy of Sciences (Österreichische Akademie der Wissenschaften).

Screening: Systematic examination for defined criteria.

RNA interference: A mechanism in cells through which genes can be switched off.

Knock-out mouse: A mouse in which one or more genes have been deactivated. This genetic alteration is often apparent in the mouse's behavior or appearance. These mice are helpful as models for studying human diseases.

Contact and interview requests:

Evelyn Devuyst, Communications IMBA - Institute of Molecular Biotechnology
Tel. +43 1 797 30 - 3626
evelyn.devuyst@imba.oeaw.ac.at

Evelyn Devuyst | idw
Further information:
http://www.imba.oeaw.ac.at

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>