Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomarkers accurately distinguish mesothelioma from non-cancerous tissue

06.06.2014

Investigators pinpoint 4 key MicroRNAs, according to new report in the Journal of Molecular Diagnostics

Scientists have identified four biomarkers that may help resolve the difficult differential diagnosis between malignant pleural mesothelioma (MPM) and non-cancerous pleural tissue with reactive mesothelial proliferations (RMPs). This is a frequent differential diagnostic problem in pleural biopsy samples taken from patients with clinical suspicion of MPM. The ability to make more accurate diagnoses earlier may facilitate improved patient outcomes. This new study appears in the Journal of Molecular Diagnostics.

"Our goal was to identify microRNAs (miRNAs) that can aid in the differential diagnosis of MPM from RMPs," says lead investigator Eric Santoni-Rugiu, MD, PhD, of the Laboratory of Molecular Pathology at the Department of Pathology of Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark. miRNAs, which are small, non-coding RNA strands composed of approximately 22 nucleotides, have been shown to be potential diagnostic, prognostic, and predictive markers in other cancers.

After screening 742 miRNAs, the investigators identified miR-126, miR-143, miR-145, and miR-652 as the best candidates to diagnose MPM. Using results from these four miRNAs, tissue samples from patients with known outcomes could be classified as MPM or non-cancerous with an accuracy of 0.94, sensitivity of 0.95, and specificity of 0.93. Further, an association between miRNA levels and patient survival could be made.

"The International Mesothelioma Interest Group (IMIG) recommends that a diagnostic marker of MPM have sensitivity/specificity of >0.80, and these criteria are fulfilled by our miRNA classifier," comments Dr. Santoni-Rugiu. The authors suggest that diagnostic accuracy can be further improved by adding immunohistochemical testing of miRNA targets in biopsy tissue to their miRNA assay. This combined assay could enable analysis of samples with low tumor cell count.

MPM, which is linked to long-term asbestos exposure, is an aggressive cancer originating from the mesothelial cells that line the membrane surrounding each lung, known as the pleura. Distinguishing MPM from noncancerous abnormalities, such as reactive mesothelial hyperplasia or fibrous pleurisy (organizing pleuritis), can be challenging as there are no generally accepted diagnostic biomarkers for differentiating these two conditions. As a result, patients often present with the disease when they are already at an advanced stage, and less than 20% of patients can be successfully treated surgically.

The current study, however, suggests that miRNAs may provide new opportunities for improving the accuracy of the differential diagnosis between MPM and noncancerous pleural conditions. If further validated, the combination of ISH for miRNAs with immunohistocemical testing of miRNA targets may therefore have the potential to aid in the diagnosis, and thus outcome, of MPM.

TECHNICAL DETAILS OF THE STUDY

To identify and assess microRNAs as possible diagnostic biomarkers of MPM, the expression of 742 miRNAs in FFPE preoperative diagnostic biopsies, surgically resected MPM specimens previously treated with chemotherapy, and corresponding non-neoplastic pleura (NNP) from five patients were screened using an RT-qPCR-based platform. Four miRNAs (miR-126, miR-143, miR-145, and miR-652) were significantly down-regulated (≥2 fold) in resected MPM and/or chemotherapy-naïve diagnostic tumor biopsies.

Validation of the obtained miRNA-expression profile was performed on surgically removed tissue samples from 40 MPM patients and 14 patient-matched NNP samples as well as 12 preoperative diagnostic biopsies and five non-neoplastic reactive-mesothelial proliferation due to pneumothorax. By performing binary logistic regression on the RT-qPCR data for the four miRNAs, the classifier differentiated MPM from NNP with high sensitivity and specificity. The classifier's optimal logit(P) value of 0.62 separated NNP and MPM samples with high sensitivity, specificity, and accuracy (all ≥0.93).

For immunohistochemistry, FFPE tissue sections underwent staining using antibodies to the known miR-126 targets LAT1 and Crk-II, were evaluated by light microscopy, and scored by a semiquantitative H score. Although no significant differences were found between MPM and NNP samples for Crk-II, the MPM samples had a median H score of 2 for LAT1 immunostaining, which was significantly higher than the 0.5 median score for the NNP samples (P < 0.01). Furthermore, the level of LAT1 in MPM inversely correlated with that of miR-126.

Eileen Leahy | Eurek Alert!
Further information:
http://www.elsevier.com

Further reports about: Molecular biomarkers biopsies diagnosis distinguish mesothelioma miR-126 miRNA miRNAs pleural sensitivity

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>