Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomarker identification may lead to new noninvasive test for colorectal cancer detection

07.06.2013
Serum DNA analysis allows detection of early disease, say researchers in The Journal of Molecular Diagnostics

The average 5-year survival for colorectal cancer (CRC) is less than 10% if metastasis occurs, but can reach 90% if detected early. A new non-invasive test has been developed that measures methylation of the SDC2 gene in tissues and blood sera.

This test detected 87% of all stages of colorectal cancer cases (sensitivity) without significant difference between early and advanced stages, while correctly identifying 95% of disease-free patients (specificity). The results are published in the July issue of The Journal of Molecular Diagnostics.

According to the US Centers for Disease Control and Prevention, CRC is the second leading cancer killer in the US affecting both men and women. In 2009, close to 137,000 people in the US were diagnosed with CRC, with close to a 40% mortality rate.

There are other screening choices for CRC, including fecal occult blood testing (FOBT), fecal immunochemical testing, and colonoscopy. Colonoscopy is the gold standard of CRC screening, but patient resistance – mostly due to the unpleasant preparation – has curbed widespread adoption. FOBT is non-invasive but has limited sensitivity, particularly for early disease. A sensitive and specific non-invasive test using blood or stool could to be a more preferable option with the potential of saving many lives.

In their search for a biomarker that could be used for the early detection of CRC, investigators from Genomictree, Inc. and Yonsei University College of Medicine in Seoul, South Korea, performed DNA microarray analysis coupled with enriched methylated DNA using tissues from primary tumors and non-tumor tissues from 12 CRC patients. After step-wise filtering, they found a set of genes that were highly methylated across all of the CRC tumors. Ultimately they identified one gene, SDC2, which encodes the membrane syndecan-2 protein, a protein that is known to participate in cell proliferation, cell migration, and is expressed in colon mesenchymal cells. The methylation level of target region of SDC2 assessed in tumor tissue was found to be significantly higher than that from paired adjacent non-tumor tissue.

The next step was to clinically validate the biomarker by analyzing SDC2 methylation levels in primary tumors and paired-adjacent non-tumor tissue samples from 133 CRC patients. Investigators found that in the transcriptional regulatory region of the SDC2 gene, tumor samples showed significantly higher levels of methylation than the control samples. SDC2 methylation positivity ranged from 92.9% to 100% when samples were stratified according to stages of cancer.

Further, investigators found that the SDC2 biomarker could be measured in serum samples from CRC patients and healthy individuals. "The SDC2 methylation test was able to detect 92% for detection of stage I cancer patients indicating that SDC2 is suitable for early detection of CRC where therapeutic interventions have the greatest likelihood of curing the patient from the disease," says first author TaeJeong Oh, PhD.

The authors suggest that the SDC2 methylation test they describe could possibly be used as an alternative to or in conjunction with colonoscopy. It could also be used to monitor cancer progression and treatment. Dr. Sungwhan An, corresponding author and CEO of Genomictree, Inc., commented: "We are very excited with this result using a small amount of serum DNA from less than 1ml of blood. I believe a greater volume of blood will further improve the clinical performance of this test. We are currently preparing another set of clinical validation studies evaluating SDC2 methylation in serum DNA from patients with early adenoma." In future research the authors will explore whether this biomarker is specific to CRC or universal among other cancers.

David Sampson | EurekAlert!
Further information:
http://www.elsevier.com

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>