Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomarker identification may lead to new noninvasive test for colorectal cancer detection

07.06.2013
Serum DNA analysis allows detection of early disease, say researchers in The Journal of Molecular Diagnostics

The average 5-year survival for colorectal cancer (CRC) is less than 10% if metastasis occurs, but can reach 90% if detected early. A new non-invasive test has been developed that measures methylation of the SDC2 gene in tissues and blood sera.

This test detected 87% of all stages of colorectal cancer cases (sensitivity) without significant difference between early and advanced stages, while correctly identifying 95% of disease-free patients (specificity). The results are published in the July issue of The Journal of Molecular Diagnostics.

According to the US Centers for Disease Control and Prevention, CRC is the second leading cancer killer in the US affecting both men and women. In 2009, close to 137,000 people in the US were diagnosed with CRC, with close to a 40% mortality rate.

There are other screening choices for CRC, including fecal occult blood testing (FOBT), fecal immunochemical testing, and colonoscopy. Colonoscopy is the gold standard of CRC screening, but patient resistance – mostly due to the unpleasant preparation – has curbed widespread adoption. FOBT is non-invasive but has limited sensitivity, particularly for early disease. A sensitive and specific non-invasive test using blood or stool could to be a more preferable option with the potential of saving many lives.

In their search for a biomarker that could be used for the early detection of CRC, investigators from Genomictree, Inc. and Yonsei University College of Medicine in Seoul, South Korea, performed DNA microarray analysis coupled with enriched methylated DNA using tissues from primary tumors and non-tumor tissues from 12 CRC patients. After step-wise filtering, they found a set of genes that were highly methylated across all of the CRC tumors. Ultimately they identified one gene, SDC2, which encodes the membrane syndecan-2 protein, a protein that is known to participate in cell proliferation, cell migration, and is expressed in colon mesenchymal cells. The methylation level of target region of SDC2 assessed in tumor tissue was found to be significantly higher than that from paired adjacent non-tumor tissue.

The next step was to clinically validate the biomarker by analyzing SDC2 methylation levels in primary tumors and paired-adjacent non-tumor tissue samples from 133 CRC patients. Investigators found that in the transcriptional regulatory region of the SDC2 gene, tumor samples showed significantly higher levels of methylation than the control samples. SDC2 methylation positivity ranged from 92.9% to 100% when samples were stratified according to stages of cancer.

Further, investigators found that the SDC2 biomarker could be measured in serum samples from CRC patients and healthy individuals. "The SDC2 methylation test was able to detect 92% for detection of stage I cancer patients indicating that SDC2 is suitable for early detection of CRC where therapeutic interventions have the greatest likelihood of curing the patient from the disease," says first author TaeJeong Oh, PhD.

The authors suggest that the SDC2 methylation test they describe could possibly be used as an alternative to or in conjunction with colonoscopy. It could also be used to monitor cancer progression and treatment. Dr. Sungwhan An, corresponding author and CEO of Genomictree, Inc., commented: "We are very excited with this result using a small amount of serum DNA from less than 1ml of blood. I believe a greater volume of blood will further improve the clinical performance of this test. We are currently preparing another set of clinical validation studies evaluating SDC2 methylation in serum DNA from patients with early adenoma." In future research the authors will explore whether this biomarker is specific to CRC or universal among other cancers.

David Sampson | EurekAlert!
Further information:
http://www.elsevier.com

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>