Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists Find Diatom to Reduce Red Tide’s Toxicity

22.08.2008
Scientists at the Georgia Institute of Technology have found that a diatom can reduce the levels of the red tide’s toxicity to animals and that the same diatom can reduce its toxicity to other algae as well.

It’s estimated that the red tide algae, Karenia brevis, costs approximately $20 million per bloom in economic damage off the coast of Florida alone. Scientists at the Georgia Institute of Technology have found that a diatom can reduce the levels of the red tide’s toxicity to animals and that the same diatom can reduce red tide’s toxicity to other algae as well.

If scientists can learn to use this process to reduce the toxicity of red tide, they could reduce the vast amount of economic damage done to the seafood and tourism industries. The research appears as articles in press for the Web sites of the journals Harmful Algae and the Proceedings of the Royal Society of London B.

“We found that red tide toxins can be metabolized by other species of phytoplankton. That holds true for both the brevetoxins that damage members of the animal kingdom and the as yet unknown allelopathic toxins that kill other competing species of algae,” said Julia Kubanek, an associate professor with a joint appointment in Georgia Tech’s School of Biology and School of Chemistry and Biochemistry.

Red tide is a dramatic case of an ecosystem that’s out of control. In normal seawater, K. brevis makes up about 1 percent or less of the species, but during a red tide, that share increases to more than 90 percent. Filter feeders such as oysters, mussels and clams ingest the dinoflagellate and become unsafe to eat. Fish killed by the red tide wash on the shore, which can be contaminated and essentially unusable to tourists for months at a time.

Kubanek and her researchers found in previous work that the growth of the diatom Skeletonema costatum was only moderately suppressed by the brevetoxins released by the red tide. So, they figured that the diatom might have a way to deal with the toxins. According to their study, they were right.

In one experiment, detailed in the journal Harmful Algae, Kubanek’s students grew the red tide algae along with the S. costatum diatom to test her group’s hypothesis and found that the samples with both organisms had a smaller concentration of brevetoxin B than samples without the diatom. They also tested the algae with four different S. costatum diatom strains from around the world and came up with largely the same results. That suggests that evolutionary experience with the red tide algae was not necessary for the diatom to resist the toxins.

In another experiment, covered in Proceedings of the Royal Society B, they found that the red tide algae was able to reduce the growth of the S. costatum diatom, but that exposure of the red tide organism to S. costatum makes the red tide less toxic to microscopic algae. That suggests that the diatom is somehow able to reduce the potency of red tide’s toxins.

“It could be that Skeletonema is degrading Karenia's allelopathic chemicals just like it degrades brevetoxins. Or, it could be that Skeletonema is stressing Karenia out, making it harder to produce allelopathic chemicals,” said Kubanek.

What they do know is that the brevetoxins that harm oysters and other members of the animal kingdom aren’t the whole story.

“We found that when we took seawater and added purified brevetoxins to it, the live algae didn’t suffer much, so there must be other chemicals released by the red tide that are toxic to these algae,” said Kubanek.

How that’s done, isn’t clear yet, but Kubanek and her group are currently working on finding the answer to that question.

“What we do know is that this diatom, S. costatum, is able to undermine these toxins produced by the red tide, as well as the brevetoxins that are known to kill vertebrate animals like fish and dolphins,” said Kubanek.

If scientists such as Kubanek and her team can learn more about the strategies that microscopic algae use to reduce the toxicity of red tide, they might be able to use that knowledge to help reduce the poisonous effects the tide has on the animal kingdom, not to mention the damage it does to the seafood and tourism industries.

Kubanek’s research team for these studies consisted of Tracey Myers and Emily Prince from Georgia Tech and Jerome Naar of the Center for Marine Science at the University of North Carolina at Wilmington.

David Terraso | Newswise Science News
Further information:
http://www.gatech.edu/news-room/

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>