Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists Find Diatom to Reduce Red Tide’s Toxicity

22.08.2008
Scientists at the Georgia Institute of Technology have found that a diatom can reduce the levels of the red tide’s toxicity to animals and that the same diatom can reduce its toxicity to other algae as well.

It’s estimated that the red tide algae, Karenia brevis, costs approximately $20 million per bloom in economic damage off the coast of Florida alone. Scientists at the Georgia Institute of Technology have found that a diatom can reduce the levels of the red tide’s toxicity to animals and that the same diatom can reduce red tide’s toxicity to other algae as well.

If scientists can learn to use this process to reduce the toxicity of red tide, they could reduce the vast amount of economic damage done to the seafood and tourism industries. The research appears as articles in press for the Web sites of the journals Harmful Algae and the Proceedings of the Royal Society of London B.

“We found that red tide toxins can be metabolized by other species of phytoplankton. That holds true for both the brevetoxins that damage members of the animal kingdom and the as yet unknown allelopathic toxins that kill other competing species of algae,” said Julia Kubanek, an associate professor with a joint appointment in Georgia Tech’s School of Biology and School of Chemistry and Biochemistry.

Red tide is a dramatic case of an ecosystem that’s out of control. In normal seawater, K. brevis makes up about 1 percent or less of the species, but during a red tide, that share increases to more than 90 percent. Filter feeders such as oysters, mussels and clams ingest the dinoflagellate and become unsafe to eat. Fish killed by the red tide wash on the shore, which can be contaminated and essentially unusable to tourists for months at a time.

Kubanek and her researchers found in previous work that the growth of the diatom Skeletonema costatum was only moderately suppressed by the brevetoxins released by the red tide. So, they figured that the diatom might have a way to deal with the toxins. According to their study, they were right.

In one experiment, detailed in the journal Harmful Algae, Kubanek’s students grew the red tide algae along with the S. costatum diatom to test her group’s hypothesis and found that the samples with both organisms had a smaller concentration of brevetoxin B than samples without the diatom. They also tested the algae with four different S. costatum diatom strains from around the world and came up with largely the same results. That suggests that evolutionary experience with the red tide algae was not necessary for the diatom to resist the toxins.

In another experiment, covered in Proceedings of the Royal Society B, they found that the red tide algae was able to reduce the growth of the S. costatum diatom, but that exposure of the red tide organism to S. costatum makes the red tide less toxic to microscopic algae. That suggests that the diatom is somehow able to reduce the potency of red tide’s toxins.

“It could be that Skeletonema is degrading Karenia's allelopathic chemicals just like it degrades brevetoxins. Or, it could be that Skeletonema is stressing Karenia out, making it harder to produce allelopathic chemicals,” said Kubanek.

What they do know is that the brevetoxins that harm oysters and other members of the animal kingdom aren’t the whole story.

“We found that when we took seawater and added purified brevetoxins to it, the live algae didn’t suffer much, so there must be other chemicals released by the red tide that are toxic to these algae,” said Kubanek.

How that’s done, isn’t clear yet, but Kubanek and her group are currently working on finding the answer to that question.

“What we do know is that this diatom, S. costatum, is able to undermine these toxins produced by the red tide, as well as the brevetoxins that are known to kill vertebrate animals like fish and dolphins,” said Kubanek.

If scientists such as Kubanek and her team can learn more about the strategies that microscopic algae use to reduce the toxicity of red tide, they might be able to use that knowledge to help reduce the poisonous effects the tide has on the animal kingdom, not to mention the damage it does to the seafood and tourism industries.

Kubanek’s research team for these studies consisted of Tracey Myers and Emily Prince from Georgia Tech and Jerome Naar of the Center for Marine Science at the University of North Carolina at Wilmington.

David Terraso | Newswise Science News
Further information:
http://www.gatech.edu/news-room/

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>