Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biological catch-22 prevents induction of antibodies that block HIV

16.12.2009
Scientists seeking to understand how to make an AIDS vaccine have found the cause of a major roadblock. It turns out that the immune system can indeed produce cells with the potential to manufacture powerful HIV-blocking antibodies – but at the same time, the immune system works equally hard to make sure these cells are eliminated before they have a chance to mature.

"These studies show that a potentially protective neutralizing antibody against a viral disease is under the control of immunological tolerance," said Barton Haynes, M.D., director of the Center for HIV/AIDS Vaccine Immunology (CHAVI) at Duke University Medical Center and senior author of the study appearing in the online early edition of the Proceedings of the National Academy of Sciences. "This represents a new insight into the way HIV effectively evades detection by the B cell arm of the immune system and may offer new directions for vaccine design."

Over the years, scientists have assumed that B cells – one of the first lines of defense against infection – are simply not able to "see" the HIV virus. HIV has the ability to hide its most vulnerable parts from immune system surveillance, and researchers generally assumed that helped explain why B cells often took weeks and even months to arise following infection.

But several years ago, Duke researchers hypothesized that the antibodies required to broadly neutralize HIV may not be produced in the first place because the immune system "sees" them as a potential threat – due to their similarity to antibodies that promote autoimmune disease – and destroys them.

To see if this is indeed what happens, Laurent Verkoczy, Ph.D., assistant professor of medicine at Duke and the lead author of the study, and Haynes genetically engineered a mouse that could only produce B cells containing a rare but potent broadly neutralizing human antibody that is able to block HIV infection.

Researchers found that the mouse's immune system produced plenty of early stage B cells bearing this human neutralizing antibody on their surface but eliminated most of them before they had a chance to fully evolve into more mature B cells capable of secreting the antibody.

"This work may mean that we need to think and act very differently in envisioning how a successful vaccine may work," said Verkoczy. "The good news is that while about 85 percent of the "right" kind of B cells are eliminated, about 15 percent survive and wind up in circulating blood, but are turned off. One goal in vaccine design may be to figure out how to wake them up so they can go to work."

"We have now unveiled a major reason why members of this class of neutralizing antibodies are not routinely made: Our own immune systems block their production because they are perceived as potentially harmful, when in reality, they are not," said Haynes. "This is a very unusual way the virus has developed to evade the immune system."

Haynes says researchers plan on using the new mouse model to test ways to teach the immune system to enable the production of powerful neutralizing antibodies capable of blocking HIV.

The research was supported by the Bill and Melinda Gates Foundation, the Duke Center for AIDS Research, and grants from the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health.

Duke colleagues who contributed to the research include T. Matt Holl, Hilary Bouton-Verville, S. Munir Alam, Hua-Xin Liao and Garnett Kelsoe. Additional co-authors include Marilyn Diaz, from the National Institute of Environmental Health Sciences and Ying-Bin Ouyang, of Xenogen Biosciences.

Michelle Gailiun | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>